研究生: |
余祐慈 Yu, Yu-Tzu |
---|---|
論文名稱: |
腸道氣泡破裂介導形成的甘露糖修飾奈米油珠載體用於口服抗癌治療 Intestinal Bubble Bursting-Mediated Formation of Mannose-Decorated Nanoemulsions for Oral Anticancer Therapy |
指導教授: |
宋信文
Sung, Hsing-Wen |
口試委員: |
甘霈
Kan, Pei 蘇慕寰 Su, Mu-Huan 黃滄淼 Huang, Tsang-Miao 賈維焯 Chia, Wei-Tso |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 36 |
中文關鍵詞: | 口服投遞 、疏水性藥物紫杉醇 、泡騰反應 、甘露糖 、甘露糖受體 |
外文關鍵詞: | oral delivery, hydrophobic paclitaxel, effervescent reaction, mannose, mannose receptor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
口服投遞藥物是最能被患者接受的給藥方式,然而疏水性藥物在口服後容易在腸道內自我聚集而無法有效的被吸收,因此其生體可利用率(bioavailability)普遍較低。治療胰臟癌的化療用藥—紫杉醇(paclitaxel, PTX)為一疏水性藥物,目前以靜脈注射給予治療,但未能標靶累積於腫瘤部位而造成許多副作用。因此,本研究透過腸道氣泡破裂介導形成的甘露糖修飾奈米油珠載體口服投遞紫杉醇。應用製藥上泡騰片(effervescent tablet)的產泡原理,疏水性藥物可透過奈米油珠載體攜帶並有效地分散在腸道之中;由D-甘露糖(D-mannose)與癸胺(decylamine)合成之N-癸基-D-甘露糖胺(N-decyl-D-mannosylamine, DMA)具有界面活性劑的特質,透過凝集素辨識實驗證實添加DMA可修飾甘露糖基團於奈米油珠載體表面,使奈米油珠載體擁有標靶甘露糖受體的特性。利用大鼠胰臟癌模型評估此系統的抗腫瘤功效,甘露糖修飾之奈米油珠載體可以藉由腸道中的甘露糖結合凝集素(mannose binding lectin, MBL)延長其在腸道的滯留時間,進而增進腸上皮細胞及微皺摺細胞對其之胞移作用(transcytosis),促進藥物載體吸收進入淋巴循環系統,避開肝臟的首渡效應(first pass effect),並藉由甘露糖基團將藥物載體標靶累積在腫瘤部位,除了毒殺腫瘤細胞,也同時調節腫瘤微環境,提升抗腫瘤效果,且有良好的生物安全性。這樣的口服抗癌治療方式可改善患者的生活品質,亦可標靶累積藥物於腫瘤部位以提升治療效果,具有臨床上應用之潛力。
The oral route is preferred for drug administration. However, orally taken hydrophobic drugs form insoluble aggregates upon exposure to bodily fluids in the gastrointestinal tract and cannot be effectively absorbed, so their bioavailability is low. Paclitaxel (PTX), a chemotherapy for pancreatic cancer, is a hydrophobic drug and that is delivered by intravenous (i.v.) injection. Without a targeting drug delivery system, PTX may accumulate in normal cells, causing many side effects. In this study, an oral drug delivery system that spontaneously initiates an effervescent reaction to form mannose-decorated nanoemulsions is developed to deliver PTX. By bursting of bubbles, PTX could be encapsulated in the formed nanoemulsions and be effectively dispersed in the intestinal tract. N-decyl-D-mannosylamine (DMA) synthesized from D-mannose and decylamine serves as a surfactant. A lectin recognition assay reveals that the mannose groups can be exposed on the surface of the nanoemulsions following the addition of DMA. The exposed mannose groups can bind to the mannose binding lectin (MBL) in the intestinal mucosa, promoting the transcytosis of enterocytes and microfold (M) cells. Furthermore, the mannose-decorated nanoemulsions can target mannose receptors that are expressed on stromal cells, specifically accumulating in the tumorous tissues. The system significantly improves pancreatic cancer treatment outcomes with good biosafety in the rats with an orthotopically created pancreatic cancer. This oral anticancer therapy not only has great efficacy, but also has potential for clinical application, improving the patients' quality of life.
[1] Brown, T. D.; Whitehead, K. A.; Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 2020, 5 (2), 127-148.
[2] Mahmood, A.; Bernkop-Schnurch, A. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv. Drug Delivery Rev. 2019, 142, 91-101.
[3] Miao, Y. B.; Lin, Y. J.; Chen, K. H.; Luo, P. K.; Chuang, S. H.; Yu, Y. T.; Tai, H. M.; Chen, C. T.; Lin, K. J.; Sung, H. W. Engineering Nano- and Microparticles as Oral Delivery Vehicles to Promote Intestinal Lymphatic Drug Transport. Adv. Mater. 2021, 33 (51), 2104139.
[4] Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discovery 2020, 19 (4), 277-289.
[5] Truong-Le, V.; Lovalenti, P. M.; Abdul-Fattah, A. M. Stabilization Challenges and Formulation Strategies Associated with Oral Biologic Drug Delivery Systems. Adv. Drug Delivery Rev. 2015, 93, 95-108.
[6] Thanki, K.; Gangwal, R. P.; Sangamwar, A. T.; Jain, S. Oral delivery of anticancer drugs: Challenges and opportunities. J. Controlled Release 2013, 170 (1), 15-40.
[7] Jang, J. H.; Jeong, S. H.; Lee, Y. B. Enhanced Lymphatic Delivery of Methotrexate Using W/O/W Nanoemulsion: In Vitro Characterization and Pharmacokinetic Study. Pharmaceutics 2020, 12 (10), 987-+.
[8] Mabbott, N. A.; Donaldson, D. S.; Ohno, H.; Williams, I. R.; Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 2013, 6 (4), 666-677.
[9] Cho, H. Y.; Lee, Y. B. Nano-Sized Drug Delivery Systems for Lymphatic Delivery. J Nanosci. Nanotechnol. 2014, 14 (1), 868-880.
[10] Padera, T. P.; Meijer, E. F. J.; Munn, L. L. The Lymphatic System in Disease Processes and Cancer Progression. Annu. Rev. Biomed. Eng. 2016, 18, 125-158.
[11] Ubellacker, J. M.; Tasdogan, A.; Ramesh, V.; Shen, B.; Mitchell, E. C.; Martin-Sandoval, M. S.; Gu, Z. M.; McCormick, M. L.; Durham, A. B.; Spitz, D. R.; et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 2020, 585 (7823), 113-+.
[12] Yang, J. S.; Xu, R. Y.; Wang, C. C.; Qiu, J. D.; Ren, B.; You, L. Early screening and diagnosis strategies of pancreatic cancer: a comprehensive review. Cancer Commun. 2021, 41 (12), 1257-1274.
[13] Neoptolemos, J. P.; Kleeff, J.; Michl, P.; Costello, E.; Greenhalf, W.; Palmer, D. H. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat. Rev. Gastroenterol. Hepatol. 2018, 15 (6), 332-347.
[14] Hosein, A. N.; Brekken, R. A.; Maitra, A. Pancreatic cancer stroma: an update on therapeutic targeting strategies. Nat. Rev. Gastroenterol. Hepatol. 2020, 17 (8), 487-505.
[15] Schnittert, J.; Bansal, R.; Prakash, J. Targeting Pancreatic Stellate Cells in Cancer. Trends Cancer 2019, 5 (2), 128-142.
[16] Weniger, M.; Honselmann, K. C.; Liss, A. S. The Extracellular Matrix and Pancreatic Cancer: A Complex Relationship. Cancers 2018, 10 (9), 316-+.
[17] Klein, I.; Lehmann, H. C. Pathomechanisms of Paclitaxel-Induced Peripheral Neuropathy. Toxics 2021, 9 (10), 229-+.
[18] Skubnik, J.; Pavlickova, V.; Ruml, T.; Rimpelova, S. Current Perspectives on Taxanes: Focus on Their Bioactivity, Delivery and Combination Therapy. Plants 2021, 10 (3), 569-+.
[19] Zhu, L. Y.; Chen, L. Q. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 2019, 24 (1), 1-11.
[20] Perdue, J. D.; Seaton, P. J.; Tyrell, J. A.; DeVido, D. R. The removal of Cremophor EL® from paclitaxel for quantitative analysis by HPLC-UV. J. Pharm. Biomed. Anal. 2006, 41 (1), 117-123.
[21] Chou, P. L.; Huang, Y. P.; Cheng, M. H.; Rau, K. M.; Fang, Y. P. Improvement of Paclitaxel-Associated Adverse Reactions (ADRs) via the Use of Nano-Based Drug Delivery Systems: A Systematic Review and Network Meta-Analysis. Int. J. Nanomed. 2020, 15, 1731-1743.
[22] Markman, M.; Mekhail, T. M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother. 2002, 3 (6), 755-766.
[23] Desai, N. Nanoparticle albumin-bound paclitaxel (Abraxane®). In Albumin in Medicine; Springer, Singapore, 2016; pp 101-119.
[24] Kanbayashi, Y.; Sakaguchi, K.; Ishikawa, T.; Ouchi, Y.; Nakatsukasa, K.; Tabuchi, Y.; Kanehisa, F.; Hiramatsu, M.; Takagi, R.; Yokota, I.; et al. Comparison of the efficacy of cryotherapy and compression therapy for preventing nanoparticle albumin-bound paclitaxel-induced peripheral neuropathy: A prospective self-controlled trial. Breast 2020, 49, 219-224.
[25] AboulFotouh, K.; Allam, A. A.; El-Badry, M.; El-Sayed, A. M. Role of self-emulsifying drug delivery systems in optimizing the oral delivery of hydrophilic macromolecules and reducing interindividual variability. Colloids Surf., B 2018, 167, 82-92.
[26] Singh, B.; Bandopadhyay, S.; Kapil, R.; Singh, R.; Katare, O. P. Self-Emulsifying Drug Delivery Systems (SEDDS): Formulation Development, Characterization, and Applications. Crit. Rev. Ther. Drug Carrier Syst. 2009, 26 (5), 427-521.
[27] Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems an overview. Acta Pharm. Sin. B 2013, 3 (6), 361-372.
[28] Buya, A. B.; Beloqui, A.; Memvanga, P. B.; Preat, V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020, 12 (12), 1194-+.
[29] Patel, S. G.; Siddaiah, M. Formulation and evaluation of effervescent tablets: a review. J. Drug Delivery Ther. 2018, 8 (6), 296-303.
[30] Chen, K. H.; Miao, Y. B.; Shang, C. Y.; Huang, T. Y.; Yu, Y. T.; Yeh, C. N.; Song, H. L.; Chen, C. T.; Mi, F. L.; Lin, K. J.; et al. A bubble bursting-mediated oral drug delivery system that enables concurrent delivery of lipophilic and hydrophilic chemotherapeutics for treating pancreatic tumors in rats. Biomaterials 2020, 255, 120157.
[31] Krug, S. M.; Amasheh, M.; Dittmann, I.; Christoffel, I.; Fromm, M.; Amasheh, S. Sodium caprate as an enhancer of macromolecule permeation across tricellular tight junctions of intestinal cells. Biomaterials 2013, 34 (1), 275-282.
[32] Gao, S.; Liu, Y. L.; Liu, M.; Yang, D. J.; Zhang, M. M.; Shi, K. Biodegradable mesoporous nanocomposites with dual-targeting function for enhanced anti-tumor therapy. J. Controlled Release 2022, 341, 383-398.
[33] Dalle Vedove, E.; Costabile, G.; Merkel, O. M. Mannose and Mannose-6-Phosphate Receptor–Targeted Drug Delivery Systems and Their Application in Cancer Therapy. Adv. Healthcare Mater. 2018, 7 (14), 1701398.
[34] Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N. K. A review of glycosylated carriers for drug delivery. Biomaterials 2012, 33 (16), 4166-4186.
[35] Zhang, L. H.; Wu, S. J.; Qin, Y.; Fan, F.; Zhang, Z. M.; Huang, C. L.; Ji, W. H.; Lu, L.; Wang, C.; Sung, H. F.; et al. Targeted Codelivery of an Antigen and Dual Agonists by Hybrid Nanoparticles for Enhanced Cancer Immunotherapy. Nano Lett. 2019, 19 (7), 4237-4249.
[36] East, L.; Isacke, C. M. The mannose receptor family. Biochimica et Biophysica Acta (BBA) - General Subjects 2002, 1572 (2), 364-386.
[37] Martinez-Pomares, L. The mannose receptor. J. Leukocyte Biol. 2012, 92 (6), 1177-1186.
[38] Llorca, O. Extended and bent conformations of the mannose receptor family. Cell. Mol. Life Sci. 2008, 65 (9), 1302-1310.
[39] Mizuta, Y.; Maeda, H.; Ishima, Y.; Minayoshi, Y.; Ichimizu, S.; Kinoshita, R.; Fujita, I.; Kai, T.; Hirata, K.; Nakamura, T.; et al. A Mannosylated, PEGylated Albumin as a Drug Delivery System for the Treatment of Cancer Stroma Cells. Adv. Funct. Mater. 2021, 31 (43), 2104136.
[40] Zhang, Y.; Zheng, D. W.; Li, C. X.; Pan, P.; Zeng, S. M.; Pan, T.; Zhang, X. Z. Temulence Therapy to Orthotopic Colorectal Tumor via Oral Administration of Fungi-Based Acetaldehyde Generator. Small Methods 2022, 6 (1), 2100951.
[41] Wei, Z. H.; Zhang, X. Q.; Yong, T. Y.; Bie, N. N.; Zhan, G. T.; Li, X.; Liang, Q. L.; Li, J. Y.; Yu, J. J.; Huang, G.; et al. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat. Commun. 2021, 12 (1), 1-20.
[42] Zhao, P.; Yin, W.; Wu, A.; Tang, Y.; Wang, J.; Pan, Z.; Lin, T.; Zhang, M.; Chen, B.; Duan, Y.; et al. Dual-Targeting to Cancer Cells and M2 Macrophages via Biomimetic Delivery of Mannosylated Albumin Nanoparticles for Drug-Resistant Cancer Therapy. Adv. Funct. Mater. 2017, 27 (44), 1700403.
[43] Uemura, K.; Saka, M.; Nakagawa, T.; Kawasaki, N.; Thiel, S.; Jensenius, J. C.; Kawasaki, T. L-MBP is expressed in epithelial cells of mouse small intestine. J. Immuno.l 2002, 169 (12), 6945-6950.
[44] Fievez, V.; Plapied, L.; des Rieux, A.; Pourcelle, V.; Freichels, H.; Wascotte, V.; Vanderhaeghen, M. L.; Jerome, C.; Vanderplasschen, A.; Marchand-Brynaert, J.; et al. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur. J. Pharm. Biopharm. 2009, 73 (1), 16-24.
[45] Salman, H. H.; Gamazo, C.; Campanero, M. A.; Irache, J. M. Bioadhesive Mannosylated Nanoparticles for Oral Drug Delivery. J. Nanosci. Nanotechno. 2006, 6 (9-10), 3203-3209.
[46] Kosaka, A.; Aida, M.; Katsumoto, Y. Reconsidering the activation entropy for anomerization of glucose and mannose in water studied by NMR spectroscopy. J. Mol. Struct. 2015, 1093, 195-200.
[47] Goldstein, I. J.; Winter, H. C.; Poretz, R. D. Chapter 12 - Plant lectins: tools for the study of complex carbohydrates. In New Comprehensive Biochemistry, Montreuil, J., Vliegenthart, J. F. G., Schachter, H. Eds.; Vol. 29; Elsevier, 1997; pp 403-474.
[48] Conniot, J.; Scomparin, A.; Peres, C.; Yeini, E.; Pozzi, S.; Matos, A. I.; Kleiner, R.; Moura, L. I. F.; Zupancic, E.; Viana, A. S.; et al. Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat. Nanotechnol. 2019, 14 (9), 891-+.
[49] Suvarna, G.; Sharma, B. B. Concanavalin-A potential glycoprotein. J. Proteins Proteomics 2018, 9(2), 77-90.
[50] Okoli, A. S.; Raftery, M. J.; Mendz, G. L. Effects of human and porcine bile on the proteome of Helicobacter hepaticus. Proteome Sci. 2012, 10 (1), 1-16.
[51] Attili-Qadri, S.; Karra, N.; Nemirovski, A.; Schwob, O.; Talmon, Y.; Nassar, T.; Benita, S. Oral delivery system prolongs blood circulation of docetaxel nanocapsules via lymphatic absorption. Proc. Natl. Acad. Sci. 2013, 110 (43), 17498-17503.
[52] Alvarez, R.; Musteanu, M.; Garcia-Garcia, E.; Lopez-Casas, P. P.; Megias, D.; Guerra, C.; Munoz, M.; Quijano, Y.; Cubillo, A.; Rodriguez-Pascual, J.; et al. Stromal disrupting effects of nab-paclitaxel in pancreatic cancer. Br. J. Cancer 2013, 109 (4), 926-933.
[53] Yardley, D. A. nab-Paclitaxel mechanisms of action and delivery. J. Controlled Release 2013, 170 (3), 365-372.