簡易檢索 / 詳目顯示

研究生: 顏素楨
Su-Chen Yen
論文名稱: 金奈米粒子在MOS電容和生物感測器上的應用
The Application of Gold Nanopaticles for Metal-Oxide-Semiconductor Capacitor and Bio-sensor
指導教授: 朱鐵吉
Tieh-Chi Chu
柯富祥
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 91
中文關鍵詞: 臨界電壓共金結構漏電
外文關鍵詞: Leakage
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文主要有兩個研究主題:(一)金奈米粒子應用在非揮發性記憶體電容上(nonvolatile nanocrystal memory capacitor) ,(二)金奈米粒子電極式生物感應器(bio-sensor)上的應用。
    (一) 近年來,快閃記憶體之特性是利用電子儲存在浮動閘極中或氮化矽層(ONO)結構中,藉由臨界電壓的偏移來判別記憶與否。但是這些記憶體元件都有因為漏電嚴重問題。為了解決這各問題,才會發展出奈米記憶體。
    本實驗是在室溫下利用化學自組裝(self - assembly)的方式將兩種不同粒徑(3.5nm、13nm)的金奈米粒子成長在記憶體電容上,來模擬記憶體元件的電特性。 整個製程溫度在350℃以下,跟傳統利用離子佈植(implant)和高溫快速熱退火(RTA) 等奈米記憶體製程的比較之下,減少了金粒子對SiO2的熱擴散效應。而製程溫度若超過500℃會與SiO2達到共金結構(eutectic),所以室溫下的製程可大幅改善了記憶體元件的漏電問題。實驗裡則利用I-V和C-V來量測分析電性,發現金奈米記憶體電容有大臨界電壓的偏移,同時也確認此電容是有很好的電荷儲存能力和電特性。
    (二) 本實驗同樣使用化學自組裝金奈米粒子的方法來長金粒子。且利用了電子束微影來製作奈米間隙金電極。研究以不同濃度完全互補的雙股DNA(capture DNA、target DNA) 接合金奈米粒子並固著於奈米間隙電極內,產生不同的電性變化來判別DNA雜交(hybridiation)之有無。在此試圖以不同製程,降低待測DNA濃度,找出最低可偵測極限。本實驗結果外來將有助於生物晶片及生物奈米科學之發展。


    There are two subjects in this thesis. (1) the application of gold nanoparticles for nonvolatile nanocrystal memory capacitor. (2) the application of gold nanoparticles for bio-sensor.
    (1) In recent years, the characteristic of flash memory device rely on the shift of threshold voltage to estimate for whether the device memorizes or not, by the electron stored in floating- gate and on the nitrogen structure of silicon layer (ONO ). The formation of the floating -gate of poly silicon and of the nitrogen structure of silicon layer (ONO ) occurs serious leakage. To solove this problem, we develop nanocrystal memory device.
    Two different sizes (3.5nm and 15nm) of gold nanocrystal embedded metal oxide semiconductor capacitor devices were fabricated under room temperature and were modified for their electric characteristic.
    To compare the fabrication of nanocrystal memory under 350℃ with traditional impant and RTA,it reduce the diffusion on Au to SiO2.If the temperature over 550 ℃, it will occur Au-Si eutectic melt. The frabication at room temperature improve the problem of leakage of memory device. In the part experiment, we take the measurement and analysis of I-V and C-V characterstic for memory capacitors to ensure the good retention significant threshold voltage (Vt) shift and electric characterstic of the gold nanocrystals.

    (2) The nano-gap electrodes are fabricated by an E-beam Lithography. Gold nanoparticles are synthesized by a chemical reduction method. The purpose of this thesis is to employ electrical detection on DNA hybridization through single-layer gold nanoparticles that are immobilized on a silicon wafer between nano-gap gold electrodes. In studies, we change the concentrations of complementary DNA (capture DNA、target DNA) to observe the variety of electric characteristic. Attempt to make different fabrication process and find out the lowest of the DNA concentrations that want to be measured. This kind of experiment can supply the information to develop the biochip and bionanotechnology.

    摘要……………………………………………………………………...I 誌謝………………………………………………...………….………IV 目錄………………………………………………..…………………… V 表目錄………………………………………………………………...VII 圖目錄……………………………………………….……………….VIII 第一章 緒論…………………………………………….……………….1 1.1 研究背景………………………………………………..………...1 1.2研究目的……………………………………………….…………….8 第二章 文獻回顧……………………………………………………. 10 2.1金奈米粒子合成與自組裝原理……………………………………10 2.2奈米記憶體元件…………………………………………………… 14 2.2.1記憶體元件簡介………………………………………………..15 2.2.2奈米記憶體操作機制….……………………………………….17 2. 3電極式DNA生物感測器簡介………………………………………23 第三章 實驗方法……………………………………………………...27 3.1實驗藥品及儀器………………………………………………....28 3.1.1實驗藥品………………………………………………...….. 28 3.1.2實驗儀器………………………………………………...…..29 3.2 合成金奈米粒子及自組裝薄膜之方法……………………………30 3.2.1合成金奈米粒子……………………………………………....30 3.2.1自組裝薄膜方法…………………………………………….…..31 3.3記憶體電容的製程…………………………………………………33 3.4 電極式DNA生物感測器的置備……………………………………35 3.4.1奈米金電極的置備………………………………………….…..35 3.4.2金奈米粒子單層自組裝薄膜與電訊號量……………………..39 第四章金奈米粒子記憶體電容…………………………………………44 4.1奈米記憶體製程上的比較…………………………………………44 4.1.1快速熱退火(RTA)的長金方法……………………………………44 4.1.2化學氧化還原長金方法……………………………………… …47 4.2奈米記憶體在電性上的討論………………………………….....51 4.2.1臨界電壓VT (Threshold Voltage Shift )……………………52 4.2.2電性比較和討論………………………………………………...53 第五章DNA電極式生物感測器…………………………………………63 5.1金奈米電極………………………………………………………...65 5.2目標DNA和抓取DNA濃度不同時對電流(IV)的影響………………71 5.2.1 DNA含單一錯位鹼基之檢驗分析……………………………….71 5.2.2 DNA裂解反應之確認實驗……………………………………...73 5.2.3不同濃度DNA的電性分析和比較………………..………..……74 5.2.4完全互補和單一不完全互補DNA的電性比較………………....75 第六章 結論……..…………………………………………………….85 參考文獻……..……………………………………………………..…87

    1. 呂世源,"奈米新世界",科學發展月刊,359期,頁4-7(2002)
    2. G. Timp, Nanotechnology., Chapter1, 1-5, Springer-Verlag, New York(1998)
    3. 王崇人,"神奇的奈米科學",科學發展月刊,354期,頁48-51(2002)
    4 Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories, part I: Device design and fabrication,” IEEE Trans. Electron Devices . 49, 1606–1613 (2002).
    5 Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan,, “Metal nanocrystal memories, part II: Device characteristics,”IEEE Trans. Electron Devices . 49, 1614–1622 (2002).
    5 蔡建瑩"金奈米粒子電極暨DNA雜合檢測晶片之研究",國立台灣大學碩士論文,2004
    6. 蔡宜樺"應用奈米電極檢測之單一核酸多型性生物晶片",國立台灣大學碩士
    論文,2003
    7許景翔"金奈米粒子合成及表面化學改質予其應用於DNA分子雜交之動力學 探討",國立中央大學碩士論文,2004
    8 葉智仁"ONO薄膜之研究與記憶體應用",私立中原大學碩士論文,2002
    9 E.H. Poindexter and P. J. Caplan,”Characterization of Si/SiO2 Interface Defects by Electron spin Resonance,”Progr.Surf. Sci. 14, 201-294,(1983)
    10.M. Depas, B. Vermeire, P. W. Mertens,“Dtermination of Tunneling Parameter in Ultra-Thin Oxude Layer Poly-Si/SiO2 /Si Structure,” Solid-Statate Electron. 38,1465-1471,(1995)

    11 Y. K. Lee, K.W. Song, J.W. Hyun, J. D. Lee, B. G.. Park, ”Twin SONOS Memory With 30-nm Storage Nodes Under a Merged Gate Fabricated With Inverted Sidewall and Damascene Process ”, IEEE Electron Device Letters.25, 317-319 (2004).
    12 T. S. Chen, K. H. Wu, H. Chung, and C. H. Kao,” Performance Improvement of SONOS Memory by Bandgap Engineering of Charge-Trapping Layer”, IEEE Electron Device Letters. 25 ,205-207 (2004).
    13 K. T. Chang, W. M. Chen, C. Swift, J. M. Higman, ” A New SONOS Memory Using Source-Side Injection for Programming”, IEDM Technical Digest . 26.6.1-26.6.4 (2003).
    14. N. Toshima, T. Yonezawa, “Bimetallic Nanoparticles-Novel Materials for
    Chemical and Physical Application”, New J. Chem., 22, 1179-1201 (1998)
    15.J. Turkevich, P. C. Stevenson, J. Hiller,“ A Study The Nucleation and Growth Progresses in The Synthesis of Colloidal, Disc. Faraday Soc., 11, 55-75 (1951)
    16 L. Rivas, S. S. Cortes, J. V. G. Ramos, G. Morcillo, “Growth of Silver Colloidal Particles Obtained by Citrate Reduction To Increase the Raman Enhancement Factor”, Langmuir., 17, 574-577 (2001)
    17 S. Link, Z. L. Wang, M. A. E. Sayed, “Alloy Formation of Gold-Silver Nanoparticles and the Dependence of the Plasmon Absorption on Their Composition” , J. Phys. Chem. B., 103, 3529-3533 (1999)
    18 A. B. R. Mayer, J. E. Mark ,“ Poly(2-hydroxyalkyl methacrylates) as Stabilizersfor Colloidal Noble Metal Nanoparticles,”Polymer., 41, 1627-1631 (2000)
    19 N. Toshima, M. Harada, Y. Yamazaki, K. Asakura, “Catalytic Activity and Structural Analysis of Polymer-Protected Gold-Palladium Bimetallic Clusters Prepared by The Simultaneous Reduction of Hydrogen Tetrachloroaurate and Palladium Dichloride”, J. Phys. Chem., 96, 9927-9933 (1992)

    20. M. I. Baration, Synthesis, Functionalization and Surface Treatment of Nanoparticles., Chapter5-6, 67-102, American Scientific Publishers, Calfornia(2003)
    21. G. Timp, Nanotechnology., Chapter8, 331-369, Springer-Verlag, New York(1998)
    22 A. P. Alivisatos, "Perspectives on the physical chemistry of semiconductor nanocrystals", J. Phys. Chem., 100, 13226-13239 (1996).
    23 Quasiparticle lifetime in a finite system: A nonperturbative approach", Phys. Rev. Lett. 78, 2803–2806 (2003)
    24 M. M.Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmer, "Optical absorption spectra of nanocrystal gold molecules", J. Phys. Chem. B,. 101, 3706 – 3712 (1997).
    25 E. Andrei, , Two-Dimensional Electron System, Kluwer Academic Publishers, The Netherland (1997).
    26 N. W.Ashcroft, and N. D. Mermin, Solid State Physics, Saunders College, Philadelphia. (1976)
    27 R Nikhil. Jana,* Latha Gearheart., Langmuir,. 17, 6782-6786 (2001)
    28 Fu-Ken Liu, Yu-Cheng Chang, J .J. A . P . , 42 , 4152–4158(2003)
    29 Nurit Taub, Olga Krichevski, J. Phys. Chem. B, 107, 11579-11582 (2003)
    30 T. A.Taton, Mucic, R. C., C. A. Mirkin, and L. L.Robert , "The DNA-mediated formation of supramolecular mono- and multilayered nanoparticle structures" J. Am. Chem. Soc., 122, 6305-6306 (2000).
    31 T. Teranishi, , M. Hosoe, T. Tanaka,and M. Miyake, "Size control of monodispersed Pt nanoparticles and their 2D organization by electrophoretic
    deposition", J. Phys. Chem. B,. 103, 3818-3827 (1999).

    32 C. Y. Tsai, C. C. Chen, C. C. Pun, Y. T. Cheng, D. S. Lee, F. H. Ko, and P. H. Chen, "Nano-electrical DNA detection with multilayer gold nanoparticles ", Taiwan NEMS/MEMS conference, Poster, No2., 16-19. (2003)
    33 C.C. Y. Tsai, C. C. Chen, C. C. Pun, Y. T. Cheng, D. S. Lee, F. H. Ko, and P. H. Chen, "Observation of coulomb blockade at room temperature made (2003)
    34 S. J. Park, T. A.Taton and Mirkin,”Array-based electrical detection of DNA with nanoparticles probes,” Science, 295, 1503-506 (2002)
    35 C. Y. Tsai, Y. H. Tsai, C. C. Pun, B. Chan, T. Y. Luh, C. C. Chen, F. H. Ko, P. J. Chen, P. H. Chen,"Electrical detection of DNA hybridization with multilayer gold nanoparticles between nanogap electrodes," Microsystem Technologies, 16 (2003)
    36 L.A. Lyon. And M. D. Musick,”Colloidal Au-enhanced surface plasmon resonance immunosensing”, Anal. Chem., 70, 5177-5183 (1998)
    37 S. E. Ulloa., and D. Pfannkuche,., "Electronic correlations and the non-linear conductance of quantum dots", Supetlatt. and Microstruct.,. 15(3),269-275 (1994).
    38 Y. Shi, S. L. Gu, X. L. Yuan, Y. D. Zheng, K. Saito, H. Ishikuro, and T. Hiramoto, “Silicon nano-crystals based MOS memory and effects of traps on charge storage characteristics,” in Proc. 5th Int. Conf. Solid-State and Integrated Circuit Technology,. 838–841(1998).
    39 M. She, Y. C. King, T.-J. King, and C. Hu, “Modeling and design study of nanocrystal memory devices,” in Proc. 59th Device Research Conf., 139–140 (2001) .
    40 Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E.Hasegawa, A. Ishitani, and T. Okazawa, “A high capacitive-coupling ratio (HiCR) cell for 3 V-only 64 Mb and future flash memories,” IEDM Tech. Dig., 19–22 (1993).

    41 E. C. Kan and Z. Liu, “Directed self-assembly process for nano-electronicdevices and interconnect,” Superlatt. Microstruct. 27, 473–479 (2000).
    42 Z. Liu, M. Kim, V. Narayanan, and E. C. Kan, “Process and device characteristicsof self-assembled metal nano-crystal EEPROM,” Superlatt. Microstruct. 28, 393–399 (2000).
    43 Z. Liu, C. Lee, G. Pei, V. Narayanan, and E. C. Kan, “Eluding metal contamination in CMOS front-end fabrication by nanocrystal formation process,” in MRS Fall Meeting Tech. Dig. Symp. 531-536. 2001
    44 Z. Suo and Z. Zhang, “Epitaxial films stabilized by long-range forces,”Phys. Rev. B. 58, 5116–5120 (1998).
    45 H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nanocrystalmemory,” IEEE Trans. Electron Devices. 43, 1553–1558 (1996).
    46 E. I. Alessandrini, D. R. Campbell and K. N. Tu, “Surface reactions on MOS structures,” J. Appl. Phys. 45, 4888 (1974).
    47 K. N. Tu and S. Libertini, “Wetting of quartz surfaces by Au-Si eutectic melt,” J. Appl. Phys. 48, 420 (1977).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE