簡易檢索 / 詳目顯示

研究生: 王敬森
Wang, Ching-Sen
論文名稱: 摻鈷三氧化二釔奈米粒子之製備與結構分析
Preparation and Structure Analysis of Co-doped Y2O3 Nanocrystal
指導教授: 蘇雲良
Soo,Yun-Liang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 53
中文關鍵詞: 稀磁性金屬氧化物三氧化二釔摻鈷聚酯多元醇法束縛磁性極化偏振子
外文關鍵詞: Dilute magnetic oxide, Co-doped yttrium oxide, polyol method, bounding magnetic polaron
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Nanoparticles of Co-doped Y2O3, as well as their core-shell composites with Co-doped core and Y2O3 shell, were prepared by ployol method. Thermal annealing at different temperatures from 300OC to 1050OC was employed to control the particle size within the range of 5 nm to 134 nm in diameter. The host crystal structures were investigated by x-ray powder diffraction (XRD) and high-resolution transmission electron microscope (HR-TEM).
    Local environments surrounding Y and Co in these materials were probed by using extended x-ray absorption fine structure (EXAFS) techniques. Our x - ray results reveal that the Co impurity atoms interstitial adajacent O sites in the Y2O3 host with smaller Co-O distance compared to that of the Y-O bond. As indicated by the appreciably reduced coordination number of the nearest O shell around the central Co atom, a large percentage of Co atoms may be located on the particle surface. However, the number of surface Co atoms was found to be great reduced in the core-shell samples. Co-doped Y2O3 Nanoparticle magnetic moment and Thermo-remanent were measured by superconducting quantum interference device magnetometer(SQUID). All of samples perform phase supercomposition of paramagnetic and ferromagnetic at room temperature. The carrier-mediated of magnetic ions in high-k material which has no free electron insides can be explained by bound magnetic polaron theory and percolation theory . Cation local structure and oxygen vacancies play an important role in promoting BMP theory.Most of Co Ions play paramagnetic state and proportion to number of oxygen vacancies.


    以聚酯多元醇法製備三氧化二釔摻雜鈷離子奈米粒子和摻雜鈷離子的中心與純三氧化二釔殼層組合。利用熱鍛燒不同溫度約00OC到 1050OC的方式控制奈米粒子直徑範圍約5 nm 到134 nm使用X光粉末反射式繞射儀與高解析穿透式電子顯微鏡研究主體晶體結構特性。發現主體為穩定方鐵錳礦晶型。
    使用邊緣延伸X光吸收精細結構量測技術探測分析釔和鈷原子在主體內的局域結構。X光分析結果顯示鈷原子鑲嵌在主體內鄰近氧的位置且鈷氧鍵結距離比主體釔氧鍵結距離短上許多。除此之外還量出配位數有可觀的下降顯示大部分的鈷離子可能聚集在表面雖然EDX image結果沒有發現這樣的結果。然而在殼層系列的樣品發現表面鈷離子大量減少。三氧化二釔摻雜鈷離子奈米粒子的磁矩與隨溫度改變的殘磁場使用超導量子干涉元件量測。所有的奈米粒子樣品在室溫下呈現鐵磁相與順磁相的二相疊加。沒有任何的自由電子在其中的高介電係數物質內部的傳導載子可以用bound magnetic polarons (BMPs) 理論與滲透理論解釋。陽離子局域結構與氧空缺在其中扮演了很重要的角色。樣品內的鈷離子大部分處於順磁態且與氧空缺的數目呈線性相關。

    目錄 致謝 A 摘要 I 英文摘要 II 目錄 III 第一章 序論 1 1-1 稀磁性半導體簡介---------------------------------------------------1 1-2.研究動機-------------------------------------------------------------3 1-3.論文簡介------------------------------------------------------3 第二章 理論與文獻回顧 4 2-1鐵磁體Curie Weiss Law 和 3D-Spin Wave-------------------------4 2-2稀磁半導體交換場來源-平均場理論-----------------------------------6 2-3稀磁性金屬氧化物的磁性來源-Bound Magnetic Polaron,BMP------8 2-4 三氧化二釔(Y2O3,yttria)簡介--------------------------------------10 第三章量測原理簡介 11 3-1 X光粉末繞射儀原理-------------------------------------------------11 3-2高解析穿透式電子顯微鏡原理---------------------------------------12 3-3超導量子干涉儀原理----------------------------------------------14 第四章 Y2O3樣品製備與量測結果 16 4-1聚酯多元醇法(polyol method) 製備樣品----------------------------16 4-2 X光繞射分析------------------------------------------------------------22 4-3 高解析穿透式電子顯微鏡(HR-TEM)分析--------------------------------26 4-4 超導量子干涉元件(SQUID)分析-----------------------------------------30 第五章 同步光束線EXAFS 分析應用 36 5-1 X-ray 吸收光譜分析原理簡介---------------------------------------36 5-2 實驗方法 ----------------------------------------------------------42 5-3 數據分析簡介-------------------------------------------------------43 5-4 EXAFS 分析-------------------------------------------------43 第六章 結論 51 參考文獻 53  

    [1]物理雙月刊,胡裕民, 二十六卷四期
    [2]Solid State Commnication 130 199-201 (2004)
    [3]T. Dietl et. al. Sience 287 1019 (2000)
    [4]C.Kittel,Phys Rev. 73 155(1948)
    [5]Kaminski, A &Das Sarma Phys Rev Let 88, 247202 (2002)
    [6] Jia-Hsien Yao, Hsiu-Hau Lin, and Tsung-Shune Chin App. Phy. Lett. 92, 242501 (2008)
    [7] Luca Marsella and Vincenzo Fiorentini Phys Rev. B 69 172103 (2004)
    [8]J. M. D. COEY*, M. VENKATESAN AND C. B. FITZGERALD Nature Material 4, 173 (2005)
    [9]X.G. Liu et. al. Journal of Alloys and compounds 457 527-521 (2008)
    [10]a) F. Fievet, J. P. Lagier, M. Figlarz, Mater. Res. Bull. 1989, 29 b) S. Sun, C. B. Murray, D. Weller, L. Folks, A.Moser, Science 2000, 287, (1989)
    [11]Y. J. Tang,1,2,* David J. Smith,3B. L. Zink,1F. Hellman,1,2and A. E. Berkowitz Phy. Rev. B 67, 054408 (2003)
    [12]Dengyu Pan,Guoliang Xu, Liya Lv, Yuan Yong, Xiuwei Wang,Jianguo Wan, and Guanghou Wang App. Phy. Lett. 89, 082510 (2006)
    [13]Robert M. White Quantum Theory of Magnetism p90 (2005)
    [14]Dengyu Pan, Guoliang Xu, Liya Lv, Yuan Yong, Xiuwei Wang, Jianguo Wan, and Guanghou Wang App. Phys. Lett 89, 082510 (2006)
    [15]H. J. Lee, C. H. Park, S. Y. Jeong,et.al. App. Phys. Lett 88, 062504 (2006)
    [16]T. Dietl and J. Spalek, Phys. Rev. Lett. 48 355 (1982)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE