簡易檢索 / 詳目顯示

研究生: 蘇郁迪
Yu-Di Su
論文名稱: 金屬/鐵電層/絕緣層/矽結構電容與場效電晶體之製作與電性分析
The Electrical Properties of Metal-Ferroelectric-Insulator-Silicon(MFIS) Capacitors and Field-Effect Transistors Using Dy2O3 and Y2O3 as Gate Dielectric layers
指導教授: 李雅明
Joseph Ya-Min Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 127
中文關鍵詞: 鐵電薄膜鋯鈦酸鉛高介電常數薄膜鐵電記憶體
外文關鍵詞: ferroelectric, PZT, hifh-k, MFIS, Feram
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來鐵電記憶元件在下世代記憶體元件中引起很大的注意,因為鐵電記憶元件有非揮發性,寫入讀取速度快,非破壞性讀寫,低功率消耗,單一電晶體元件等優點而成為下一世代的記憶體。
    在眾多鐵電記憶結構中,本實驗是採取金屬/鐵電薄膜/絕緣體/半導體(MFIS)結構,其中絕緣體的主要目地是防止鐵電層與矽之間的交互作用,來提高元件的特性。在本實驗中成功以射頻磁控濺鍍製作金屬/鐵電薄膜/絕緣體/半導體(p-type)電容與電晶體,並對其電性作分析,其中鐵電薄膜是採用鋯鈦酸鉛(PZT),絕緣層則是採用氧化鏑(Dy2O3)與氧化釔(Y2O3)薄膜。在基本的電性量測方面,由電容—電壓的量測結果,我們可發現當電壓值由正電壓掃到負電壓時比較容易有電荷注入的發生,特別是氧化鏑當絕緣層的MFIS電容,因為在氧化鏑與矽之間能帶差比較小(0.79eV),然而在氧化釔薄膜當絕緣層的MFIS電容中,電荷注入能有效的被降低,提高元件特性,主要原因是因為有比較大的能帶差在氧化釔與矽之間(2.3eV),電子比較不會越過能障造成電荷注入(charge injection),所以能有效的減少電荷注入(charge injection),並且發現Al/PZT/Dy2O3/Si電容在熱退火溫度500度時,會有比較好的記憶窗表現(2.95V),
    在電晶體的記憶效應方面,由ID-VG特性曲線的量測結果中,我們發現氧化鏑與氧化釔薄膜當絕緣層的電晶體,其產生的記憶窗在操作電壓10V時,分別是1.55V與2.3V,其電荷保持時間(retention time)分別為4x104 s (11.1小時)與106 s (11.5天),主要原因亦是比較大的能障差在氧化釔與矽之間。


    Ferroelectric field effect transistors (FEMFETs) with a metal-ferroelectric -insulator -silicon (MFIS) structure is a promising candidate for non-volatile random access memory because of its high speed, single-device structure, low power consumption, and non-destructive read-out operation. The purpose of the insulator layer is to prevent the reaction and inter-diffusion between the ferroelectric layer and silicon substrate as well as to improve the retention properties. In this work, Dy2O3 and Y2O3 high dielectric constant films were used as the insulator layers. Dy2O3 and Y2O3 have a dielectric constant of 11~13 and 12~18, respectively. They also have good thermal stability with silicon. In this work, metal– ferroelectric-insulator-semiconductor (MFIS) capacitors and field effect transistors with the structures of Al/ Pb (Zr0.53, Ti0.47) O3 (PZT) /Dy2O3/Si and Al/PZT/Y2O3/Si were fabricated. The variation of the memory window as a function of annealing temperatures was studied. The maximum capacitance-voltage (C-V) memory window of Al/PZT/Dy2O3/p-Si capacitors was 2.95V at a sweep voltage of 9 V and was obtained with an annealing temperature of 500℃. The retention times of Al/PZT/Y2O3/Si and Al/PZT/Dy2O3/Si MFISFETs are 11.5 days and 11.1 hours, respectively. The longer retention time of Al/PZT/Y2O3/ Si field effect transistors is attributed to the larger conduction band offset at the Y2O3/Si interface (2.3eV) compared to that of Dy2O3/Si (0.79eV).

    目 錄 第一章 緒論 1.1 非揮發性記憶體簡介............................1 1.2 動態隨機存取記憶體的簡介......................2 1.3 鐵電材料的特徵................................3 1.4 鐵電材料鋯鈦酸鉛在記憶體上的應用..............4 1.5 鐵電材料於FRAM的發展現況......................5 1.6 MFIS結構的應用................................6 第二章 鋯鈦酸鉛(PZT)的物理分析 2.1 鐵電材料的結構................................7 2.2 鐵電材料的電滯曲線............................8 2.3 鐵電材料的開關理論............................9 2.4 鐵電薄膜的電性................................10 2.5 鐵電材料的可靠度..............................11 第三章 金屬(Al)/鐵電薄膜/(PZT)/絕緣體(Dy2O3,Y2O3)/半導體 電晶體與電容的製備 3.1 設備與製程....................................14 3.2 射頻磁控濺鍍法的簡介..........................14 3.3 MFIS薄膜電容器的製備..........................15 3.3.1基板及絕緣層的製作..........................15 3.3.2 Dy2O3薄膜的成長............................15 3.3.3 Y2O3薄膜的成長.............................16 3.3.4 PZT 薄膜的製作.............................17 3.3.5上下電極的製作..............................18 3.4 MFIS薄膜電晶體的製備..........................18 3.5 蝕刻上遭遇到的問題...........................22 3.6 製作問題分析.................................23 3.7 注意事項.....................................24 第四章 金屬(Al)╱鐵電薄膜(PZT)╱絕緣層(Dy2O3,Y2O3)╱半導體 結構的基本物性分析 4.1 X-ray 繞射 (XRD)分析.........................25 4.2 二次離子縱深質譜儀 (SIMS)分析................26 4.3 原子力顯微鏡(AFM)分析........................27 第五章 金屬(Al)╱鐵電薄膜(PZT)╱絕緣層(Dy2O3,Y2O3) ╱半導體 電容器的特性 5.1 MFIS結構的優缺點.............................29 5.2 MFIS電容的操作原理...........................29 5.3四種氧化層電荷對氧化層薄膜的貢獻..............31 5.4 MFIS電容在不同熱退火溫度記憶窗的探討.........33 5.5 MFIS電容在不同介電層厚度記憶窗探討...........35 5.6 MFIS電容在不同材料介電層下記憶窗探...........36 5.7 MFIS電容記憶窗理論值的探討...................38 5.7.1記憶窗與矯頑電場的關係.....................38 5.7.2記憶窗理論值與量測值的探討.................39 第六章 金屬(Al)╱鐵電薄膜(PZT)╱絕緣層(Dy2O3,Y2O3)╱半導體 場效電晶體的特性量測 6.1 MFIS場效電晶體的操作原理.....................41 6.2 MFIS場效電晶體的基本電性量測.................41 6.2.1 IDS-VDS Curve的特性.......................42 6.2.2 臨界電壓(Threshold Voltage VT)..........42 6.2.3 次臨界斜率(Sub-threshold Slope).........44 6.2.4 遷移率的探討(Mobility)..................46 6.3 電晶體的記憶體效應...........................49 6.3.1 IDS-VGS 曲線平移的探討....................49 6.3.2 on state 與off state 特性探討.............50 6.4電晶體的記憶保持力(retention time).............51 6.4.1記憶保持力的影響因素.........................51 6.4.2記憶保持力的量測探討.........................54 . 第七章結論........................................56 參考文獻..........................................58 圖表..............................................67

    Reference
    第一章
    ﹝1﹞ P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, “Flash Memories. Kluwer Academic,” 2000.
    ﹝2﹞ J. F. Scott, “Ferroelectric Memories.” Berlin, Germany: Springer-Verlag, 2001.
    ﹝3﹞ 賴明駿, “極大型積體電路之鐵電材料”, 電子月刊, 第五卷第六期, p. 94. 1996.
    ﹝4﹞ B. W. Shen, G. Chung, I. C. Chen, D. J. Coleman, P. S. Ying, R. McKee, M. Yashiro, and C. W. Teng, “Scalability of a trench capacitor cell for 64 Mbit.,” IEDM Tch. Dig., pp. 27, 1989.
    ﹝5﹞ 何彬明, “FeRAM產品化的崎嶇道路,” 電子月刊, 第五卷第三期, p.166. 1996.
    ﹝6﹞ T. Eimori and B. Desu, “A newly designed planar stacked capacitor cell with high dielectric constant film for 256Mbit DRAM,” IEEE IEDM, pp. 631-634, 1993.
    ﹝7﹞ T. Sumi and P. D. Maniar, “Ferroelectric nonvolatile memory technology and its applications,” Jpn. J. Appl. Phys., vol. 35, no. 2B, pp. 1516-1520, 1996.
    ﹝8﹞ S. L. Miller and P. J. McWhorter, “Physics of the ferroelectric nonvolatile memory field effect transistor,” J. Appl. Phys., vol. 72, no. 12, pp. 5999-6010, 1992.
    ﹝9﹞ R. Moazzami, C. Hu, and W.H. Shepherd, “A ferroelectric DRAM cell for high-density NVRAM’s,” IEEE Electron Device Lett., vol. 11, pp. 454-456, 1990.
    ﹝10﹞ 李雅明, 吳世明, 陳宏名, “鐵電記憶元件”, 電子月刊, 9月號, 1996.
    ﹝11﹞ S. Sinharoy, H. Buhay, D. R. Lampe, and M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” Journal of Vacuum Science & Technology A., vol. 10, no. 4, pp. 1554-1561, 1992.
    ﹝12﹞ T. Nakamur and Y. Fujimor, “Fabrication technology of ferroelectric memories,” Jpn. J. Appl. Phys., vol. 37, part. 1, no. 3B, pp. 1325-1327, 1998.
    ﹝13﹞ K. H. Kuo and M. J. Sun, “Metal-ferroelectric-semiconductor (MFS) FET’s using LiNbO3/Si (100) structures for nonvolatile memory Application,” IEEE Electron Device Lett., vol. 19, no. 6, pp. 204-206, 1998.
    ﹝14﹞ K. Sugibuchi, Y. Kurogi, and N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys., vol. 46, no. 7, pp. 2877-2881, 1975.
    ﹝15﹞ N. A. Basit and H. K. Kim, “Growth of highly oriented Pb(Zr,Ti)O3 films on MgO-buffered oxidized Si Substrates and its application to ferroelectric nonvolatile memory field-effect transistors ,” Appl. Phys. Lett., vol. 73, no. 26, pp. 3941-3943, 1998.
    ﹝16﹞ H. N. Lee, M. H. Lim, and Y. T. Kim, “Characteristics of metal/ferroelectric/insulator/semiconductor field effect transistors using a Pt/SrBi2Ta2O9 /Y2O3 /Si structure,” Jpn. J. Appl. Phys., vol. 37, part 1, no. 3B, pp. 1107-1109, 1998.
    ﹝17﹞ T. Hirai, Y. Fujisaki, and K. Nagashima, “Preparation of SrBi2Ta2O9 film at low temperatures and fabrication of a metal/ferroelectric /insulator/semiconductor field transistor using Al/SrBi2Ta2O9/CeO2/Si (100) structures,” Jpn. J. Appl. Phys., Vol. 36, Part 1, no. 9B, pp. 5908-5911, 1997.
    ﹝18﹞ T. P. Ma and J. P. Han, “Why is nonvolatile ferroelectric memory field-effect transistor still elusive,” IEEE Electron Device Letters, vol. 23, no. 7, pp. 386-388, 2002.
    ﹝19﹞ K. Aizawa, B. E. Park, Y. Kawashima, K. Takahashi, and H. Ishiwara, “Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors,” Appl. Phys. Lett., vol. 85, no. 15, pp. 3199-3201, 2004.
    ﹝20﹞ 沈士傑, “淺談快閃式記憶體(Flash Memory)之發展”, 電子月刊, 9月號,1996.
    第二章
    ﹝21﹞ H. M. Dulker, P. D. Beal, and J. F. Scott, “Fatigue and switching in ferroelectric memories: theory and experiment,” J. Appl. Phys., vol. 68, pp. 5783-5791, 1990.
    ﹝22﹞ J. F. Scott and Y. K. Fang, “Device physics of ferroelectric thin-film memories,” Jpn. J. Appl. Phys., vol. 38, part 1, no. 4B, pp. 2272-2274, 1999.
    ﹝23﹞ G. W. Dietz, M. Schumacher, and R. Waser, “Leakage current in Ba0.7Sr0.3TiO3 thin films for ultrahigh-density dynamic random access memories,” J. Appl. Phys., vol. 82, no. 5, pp. 2359-2361, 1997.
    ﹝24﹞ B. A. Baumert, L. H. Chang, A. T. Matsuda, T. L. Tsai, C. J. Tracy, R. B. Gregory, P. L. Fejes, N. G. Cave, and W. Chen, “Characterization of sputtered barium strontium titanate and strontium titanate thin films,” J. Appl. Phys., vol. 85, no. 2, pp.2558-2566, 1997.
    ﹝25﹞ J. F. Scott, “Ferroelectric Memories” Berlin, Germany: Springer-Verlag, 2001.
    ﹝26﹞ H. Hu and S. B. Ktupanidhi, “Current-voltage characteristics of ultrafine-grained ferroelectric Pb(Zr,Ti)O3 thin film,” J. Mater. Res., vol. 9, no. 6, 1994.
    ﹝27﹞ J. F. Scott, C. A. Araujo, B. M. Melnick, and L. D. McMillan, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories,” J. Appl. Phys., vol. 70, no. 1, pp. 382-388, 1991.
    ﹝28﹞ C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, and C. J. Mogab, “A model for electrical conduction in metal-ferroelectric-metal thin film capacitor,” J. Appl. phys., vol. 75, no. 2, pp. 1014-1022, 1994.
    ﹝29﹞ N. Inoue and Y. Hayashi, “Effect of imprint on operation and reliability of ferroelectric random access memory (FeRAM),” IEEE Transactions on Electron Devices, vol. 48, pp. 2266-2272, 2001.
    第三章
    ﹝30﹞ Y. Nakao and Y. Fujisaki, “Study on Pb-based ferroelectric thin films prepared by sol-gel method for memory application,” Jpn. J. Appl. Phys., vol. 33, no. 9B, pp. 5265-5267, 1994.
    ﹝31﹞ K. Aoki and Y. Tarui, “Dielectric properties of (111) and (100) lead-zirconate-titanate films prepared by sol-gel technique,” Jpn. J. Appl. Phys., vol. 33, no. 9B, pp. 5155-5158, 1994.
    ﹝32﹞ W. J. Lin and M. Y. Yang, “Growth and fatigue properties of pulsed laser deposited PLZT thin films with [001] preferred orientation,” J. Mat. Sci.: Materials in Electronics, vol. 7, pp. 409-417, 1996.
    ﹝33﹞ T. F. Tseng, R. P. Yang, and K. S. Liu, “Ferroelectric properties of PLZT films deposited on Si3N4-coated Si substrates by pulsed laser deposition process,” Appl. Phys. Lett., vol. 70, no. 1, pp. 46-48, 1997.
    ﹝34﹞ H. Nakasima and Y. Fujimor, “Electrical properties for capacitors of dynamic random access memory on PLZT thin films by metaorganic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 33, no. 9B, pp. 5139-5142, 1994.
    ﹝35﹞ C.M. Foster and H. K. Kim, “Single-crystal PZT thin films prepared by metal-organic chemical vapor deposition: Systematic compositional variation of electronic and optical properties,” J. Appl. Phys., vol. 81, no. 5, pp. 2349-2357, 1997.
    ﹝36﹞ H. Miki and Y. Ohji, “Uniform ultra-thin Pb(Zr,Ti)O3 films formed by metal-organic chemical vapor deposition and their electrical characteristics,” Jpn. J. Appl. Phys., vol. 33, no. 9B, pp. 5143-5146, 1994.
    ﹝37﹞ E. Cattan and H. Buhay, “Structure control of PZT buffer layers produced by magnetron sputtering,” Appl. Phys. Lett., vol. 70, no. 13, pp. 1718-1720, 1997.
    ﹝38﹞ O. Auciello, A. I. Kingon, and S. B. Krupanidhi, “Sputter synthesis of ferroelectric films and heterostructures,” Mat. Res. Bulletin, p. 25, 1996.
    ﹝39﹞ L. Wang and I. C. Chen, “Properties of PbZrTiO3 thin films prepared by R.F. magnetron sputtering and heat treatment,” Mat. Res. Bulletin, vol. 25, pp. 1495-1501, 1990.
    ﹝40﹞ V. Chikarmane and M. H. Francombe, “Effects of post-deposition annealing ambient on the electrical characteristics and phase transformation kinetics of sputtered lead zirconate (65/35) thin film capacitors,” J. Vac. Scl. Technol. A, vol. 10, no. 4, 1992.
    第四章
    ﹝41﹞ 汪建民, “材料分析,”中國材料科學學會, 1998.
    ﹝42﹞ G. Binnig and C. F. Quate, “Atomic Force Microscope,” Phys. Rev. Lett. 56, pp. 930-933, 1986.
    第五章
    ﹝43﹞ J. P. Han, S. M. Koo, C. A. Richter, and E. M. Vogel, “Influence of buffer layer thickness on memory effects of SrBi2Ta2O9/SiN/Si structures,” Appl. Phys. Lett., vol. 85, no. 8, pp. 1439-1441, 2004.
    ﹝44﹞ S. K. Lee, Y. T. Kim, and S. ll Kim, “Effect of coercive voltage and charge injection on memory windows of metal-ferroelectric- semiconductor and metal-ferroelectric-insulator- semiconductor gate structures,” J. Appl. Phys., vol. 91, no. 11, pp. 9303-9307, 2002.
    ﹝45﹞ M. Houssa, High-κGate Dielectrics, Interuniversity Microelectronics Centre (IMEC), Belgium, 2004.
    ﹝46﹞ C. Y. Chang, T. P. C. Juan, J. Y. M. Lee, “Fabrication and characterization of metal-ferroelectric(PbZr0.53Ti0.47O3)-insulator (Dy2O3)-semiconductor capacitors for nonvolatile memory applications,” Appl. Phy. Lett., vol. 88, 072917, pp. 1-3, 2006.
    ﹝47﹞ S. L. Miller, R. D. Nasby, J. R. Schwank, and P. V. Dressendorfer, “Device modeling of ferroelectric capacitors,” J. Appl. Phys., vol. 68, pp. 6463-6471, 1990.
    ﹝48﹞ S. L. Miller, J. R. Schwank R. D. Nasby, and M. S. Rodger, “Modeling ferroelectric capacitor swithching with asymmetric nonperiodic input signals and arbitrary initial conditions,” J. Appl. Phys., vol. 70, no. 5, pp.2849-2861, 1991.
    ﹝49﹞ T. Kanashima and M. Okuyama, “Analyses of high frequency capacitance- voltage characteristics of metal-ferroelectric-insulator-silicon structure,” Jpn. J. Appl. Phys., vol. 38, pp. 2044-2048, 1999.
    ﹝50﹞ Y. Fujisaki, T. Kijima, and H. Ishiwara, “High-performance metal-ferroelectric -insulator-semiconductor structures with a damage-free and hydrogen-free silicon-nitride buffer layer,” Appl. Phys. Lett., vol. 78, no. 9, pp. 1285-1287, 2001.
    ﹝51﹞ M. Y. Yang and S. B. Chen, “One-transistor PZT/Al2O3, SBT/Al2O3 and BLT/Al2O3 stacked gate memory,” IEEE IEDM, pp. 795-798, 2001.
    ﹝52﹞ C. L. Sun, S. Y. Chen, S. B. Chen, and A. Chin, “Effect of annealing temperature on physical and electrical properties of Bi3.25La0.75Ti3O12 thin films on Al2O3-buffered Si,” Appl. Phys. Lett., vol. 80, no. 11, pp. 1984-1986, 2002.
    ﹝53﹞ B. E. Park and H. Ishwara, “Fabrication of MFIS diodes using BLT (Bi,La)4Ti3O12 and LaAlO3 buffer layers,” Applications of Ferroelectrics, ISAF 2002, Proceedings of the 13th IEEE International Symposium on, 2002.
    ﹝54﹞ B. E. Park, K. Takahashi, and H. Ishiwara, “Five-day-long ferroelectric memory effect in Pt/(Bi, La)4Ti3O12/HfO/Si structures,” Appl. Phys. Lett., vol. 85, no. 19, pp. 4448-4450, 2004.
    ﹝55﹞ K. Takahashi, K. Aizawa, B. E. Park, and H. Ishwara, “Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 Buffer Layers,” Jpn. J. Appl. Phys., vol. 44, pp. 6218-6220, 2005.
    ﹝56﹞ H. N. Lee, M. H. Lim, Y. T. Kim, T. S. Kalkur, and S. H. Choh, “Characteristics of metal/ferroelectric/insulator/semiconductor field effect transistor using a Pt/SrBi2Ta2O3/Y2O3/Si structure,” Jpn. J. Appl. Phys. vol. 37, pp. 1107-1109, 1998.
    ﹝57﹞ D. S. Shin, H. N. Lee, Y. T. Kim, I. H. Choi, and B. H. Kim, “Electrical Properties of Pt/SrBi2Ta2O9/CeO2/SiO2/Si Structure for Nondestructive Readout Memory,” Jpn. J. Appl. Phys. vol. 37, pp. 4373-4376, 1998.
    ﹝58﹞ J. P. Han and T. P. Ma, “SrBi2Ta2O9 memory capacitor on Si with a silicon nitride buffer,” Appl. Phys. Lett., vol. 72, no. 10, pp. 1185-1186, 1998.
    ﹝59﹞ S. B. Xiong and S. Sakai, “Memory properties of SrBi2Ta2O9 thin film prepared on SiO2/Si substrates,” Appl. Phys. Lett., vol. 75, no. 11, pp. 1613-1615, 1999.
    ﹝60﹞ K. J. Choi, W. C. Shin, J. H. Yang, and S. G. Yoon, “Metal/ferroelectric/ insulator/semiconductor structure of Pt/SrBi2Ta2O9 /YMnO3/Si using YMnO3 as the buffer layer,” Appl. Phys. Lett., vol. 75, pp. 722-724, 1999.
    ﹝61﹞ C. H. Chien, D.Y. Wang, M. J. Yang, P. Lehnen, C. C. Leu, S. H. Chuang, T. Y. Huang, and C. Y. Chang, “High-performance Pt/SrBi2Ta2O9/ HfO2/Si Structure for Nondestructive Readout Memory,” IEEE Electron Device Letter, vol. 24, no. 9, pp. 553-555, 2003.
    ﹝62﹞ M. Noda, K. Kodama, S. Kitai, M. Takahashi, T. Kanashima, and M. Okuyama, “Basic characteristics of metal-ferroelectric -insulator-semiconductor structure using a high-k PrOx insulator layer,” J. Appl. Phys., vol. 93, no. 7, pp. 4137-4143, 2003.
    ﹝63﹞ J. P. Han, S. M. Koo, C. A. Richter, and E. M. Vogel, “Influence of buffer layer thickness on memory effects of SrBi2Ta2O9/SiN/Si structures,” Appl. Phys. Lett., vol. 85, no. 8, pp. 1439-1441, 2004.
    ﹝64﹞ K. Suzuki, D. Fu, K. Nishizawa, T. Miki and K. Kato, “Preparation of (Y,Yb)MnO3/Y2O3/Si(MFIS) Structure by Chemical Solution Deposition Method,” Jpn. J. Appl. Phys., vol. 42, pp. 6007-6010, 2003.
    ﹝65﹞ D. Ito, N. Fujimura, T. Yoshimura, and T. Ito, “Influence of Schottky and Pool-Frenkel emission on the retention property of YMnO3-based metal/ferroelectric/insulator/semiconductor capacitors,” J. Appl. Phys., vol. 94, no. 6, pp. 4036-4041, 2003.
    ﹝66﹞ K. Haratake, N. Shigemitsu, M. Nishijima et al., “Low-temperature growth and characterization of Epitaxial YMnO3/Y2O3/Si MFIS capacitors with thinner insulator layer,” Jpn. J. Appl. Phys. vol. 44, pp. 6977-6980, 2005.
    ﹝67﹞ T. Hirai , K. Teramoto, K. Nagashima, H. Koike, and Y. Tarui, “Characterization of Metal/Ferroelectric/Insulator/Semiconductor Structure with CeO2 Buffer layer,” Jpn. J. Appl. Physic, vol. 34, pp. 4163-4166, 1995.
    ﹝68﹞ B. E. Park, S. Shouriki, E. Tokumitsu, and H. Ishiwara, “Fabrication of PbZrxTi1-xO3 films on Si structures using Y2O3 buffer layers,” Jpn. J. Appl. Phys. vol. 37, pp. 5145-5149, 1998.
    第六章
    ﹝69﹞ R. Waser, Nanoelectronics and Information Technology, Cambridge University Press, p. 391, 2003.
    ﹝70﹞ G. Yi, Z. Wu, and M. Sayer, “Preparation of Pb (Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optic properties,” J. Appl. Phys., vol.64, pp. 2717-2724, 1988.
    ﹝71﹞ M. Takahashi and S. Sakai, “Self-aligned-Gate metal/ferroelectric/insulator/ semiconductor field-effect transistors with long memory retention,” Jpa. J. Appl. Phys., vol. 44, no. 25, pp. L800-L802, 2005.
    ﹝72﹞ C. T. Black, C. Farrell, and T. J. Licata, “Suppression of ferroelectric polarization by an adjustable depolarization field,” Appl. Phys. Lett., vol. 71, pp. 2041-2043, 1997.
    ﹝73﹞ M. Takahashi, H. Sugiyama, T. Nakaiso, K. Kodama, M. Noda and M.Okuyama, “Analysis and improvement of retention time of memorized state of metal-ferroelectric-insulator-semiconductor structure for ferroelectric gate FET memory,” Jpn. J. Appl. Phys. vol. 40, pp. 2923-2927, 2001.
    ﹝74﹞ K. Aizawa, B. E. Park, Y. Kawashima, K. Takahashi, and H. Ishiwara, “Impact of HfO2 buffer layers on data retention characteristics of ferroelectric-gate field-effect transistors,” Appl. Phys. Lett., vol. 85, no. 15, pp. 3199-3201, 2004.
    ﹝75﹞ T. Hirai, Y. Fujisaki, K. Nagashima, H. Koike and Y. Tarui, “Preparation of SrBi2Ta2O9 film at low temperatures and fabrication of a metal/ferroelectric /insulator/semiconductor field effect transistor using Al/SrBi2Ta2O9/CeO2 /Si(100) structures,” Jpn. J. Appl. Phys. vol. 36, pp. 5908-5911, 1997.
    ﹝76﹞ K. H. Kim, J. P. Han, S. W. Jung, and T. P. Ma, “Ferroelectric DRAM (FEDRAM) FET with metal/SrBi2Ta2O9/SiN/Si gate structure,” IEEE Electron Device Letters, vol. 23, no. 2, pp. 82-84, 2002.
    ﹝77﹞ S. Sakai and R. Ilangovan, “Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance,” IEEE Electron Device Letters, vol. 25, no. 6, pp. 369-371, 2004.
    ﹝78﹞ E. Tokumitsu and H.Ishiwara, “Nonvolatile memory operations of metal- ferroelectric-insulator-semiconductor (MFIS) FET’s using PLZT/STO/Si(100) structures,” IEEE Electron Device Letters, vol. 18, no. 4, pp. 160-162, 1997.
    ﹝79﹞ A. Chin, S. Member, M. Y. Yang, C. L. Sun, and S. Y. Chen, “Stack gate PZT/Al2O3 one transistor ferroelectric memory,” IEEE Electron Device Letters, vol. 22, no. 7, pp. 336-338, 2001.
    ﹝80﹞ S. M. Koo, S. Khartsev, C. M. Zettering, A. Grishin, and M. Ostling, “Ferroelectric Pb(Zr0.52Ti0.48) SiC field-effect transistor,” Appl. Phys. Lett., vol. 83, no. 19, pp. 3975-3977, 2003.
    ﹝81﹞ P. C. Juan, C. Y. Chang, F. C. Chiu, and J. Y. Lee, “Fabrication and characterization of metal-ferroelectric(PbZr0.53Ti0.47O3)- insulator(Dy2O3)- semiconductor (MFIS) capacitors for nonvolatile memory application,” IEEE Electron Device Letters, vol. 27, pp. 217-220, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE