簡易檢索 / 詳目顯示

研究生: 姚均逢
Yao, Chun-Feng
論文名稱: 新型共軛高分子黏著劑之合成並應用於鋰離子電池矽基陽極
Synthesis of cyclopentadithiophene-terephthalic acid copolymers via direct arylation and saponification for use in lithium-ion batteries
指導教授: 堀江正樹
Horie, Masaki
口試委員: 蘇安仲
Su, An-Chung
游進陽
Yu, Chin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 59
中文關鍵詞: 鋰離子電池共軛導電高分子黏著劑
外文關鍵詞: Lithium-ion battery, Conjugated polymer, Binder
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米矽因其較高的理論電容量(4200 mAh g-1)而成為新型的鋰離子電池陽極材料。然而在充放電過程中,奈米矽陽極巨大的體積變化使電池電容量快速損失。因此,許多團隊致力於開發多功能高分子黏著劑,改善奈米矽陽極劇烈膨脹造成的不良影響。本研究合成了包含4H-Cyclopenta[2,1-b:3,4-b']dithiophene和對苯二甲酸二甲酯或對苯二甲酸的共軛高分子黏著劑,並探討高分子支鏈對電池表現影響。對苯二甲酸二甲酯酯單元中的二甲酯基通過皂化反應轉化為羧基,使其與矽表面形成氫鍵,藉此增加電池穩定性。


    Silicon (Si) has been considered to be a next generation anode material for Li-ion batteries (LIBs) because of its high specific capacity (4200 mAhg-1). Despite such high capacity, large volume expansion and pulverization on anode during electrochemical cycling causes degradation of the batteries resulting in short life-time. This thesis describes the development of new polymer binders for Si anode in LIBs. The polymer binders have been synthesized by palladium catalyzed direct arylation of 2-ethylhexyl (EH) or triethylene glycol monomethylether (EG) substituted cyclopentadithiophene (CPDT(EH) or CPDT(EG)) and dimethyl 2,5-dibromoterephthalate (dibromo-DMT) to provide P[CPDT(EH)-DMT] and P[CPDT(EG)-DMT]. After the polymerization, DMT unit is further converted into terephthalic acid (TPA) through saponification, affording P[CPDT(EH)-TPA]-17k and P[CPDT(EG)-TPA]. These polymers are used to prepare polymer-Si nanoparticle composites for use in LIBs, showing sufficient electrical conductivity, ionic conductivity, and mechanical properties. In particular, the LIBs composed of an anode of a composite of P[CPDT(EH)-TPA]-17k with Si nanoparticle performs highest capacity in all polymers, giving a specific capacity of 3900 mAh g-1 (total anode weight) in a first charging-discharging cycle and 2300 mAh g-1 in the second cycle, followed by further decrease by 83% after 50 cycles. On the other hand, P[(CPDT(EG)-TPA] reveals the best stability, in which the capacity is observed to be 3500 and 2300 mAh g-1 in the first and the second cycles, respectively, followed by decrease by 60% after 50 charging-discharging cycles. However, the LIBs composed of P[CPDT(EH)-DMT] and P[CPDT(EH)-DMT] reveal low capacity and stability. These results show that the existence of hydroxyl groups apparently improve the cycle life of LIBs. Furthermore, effects of a molecular weight of P[CPDT(EH)-TPA] on cycling performance are studied; the LIBs composed of the low molecular weight polymer binder tends to show higher specific capacity than the higher molecular weight polymers.

    Chapterp 1. Introduction and purpose 1 1.1 Lithium ion battery 1 1.1.1 Background 1 1.1.2 Commonly used electrode materials 2 1.1.3 Functional polymers as electrode binders 4 1.2 Palladium-catalyzed cross-coupling reactions 10 1.2.1 Stille cross-coupling reaction 11 1.2.2 Suzuki-Miyaura cross-coupling reaction 12 1.2.3 Direct arylation 13 Chapterp 2. Synthesis and characterization of CPDT-based copolymers 18 2.1 Introduction 18 2.2 Synthesis of monomers 19 2.3 Synthesis and characterization of polymers 22 2.3.1 Nuclear magnetic resonance spectra 25 2.3.2 Infrared spectra 28 2.3.3 MALDI-TOF mass spectra 30 2.4 Optical and electrochemical properties 34 2.4.1 UV–Vis spectroscopy 34 Chapterp 3. Fabrication and characterization of lithium ion batteries 38 3.1 Introduction 38 3.2 Battery fabrication 38 3.2.1 Electrode preparation 39 3.2.2 Battery assembly 39 3.3 Cycle life testing of lithium ion batteries 39 Chapterp 4. Conclusion and future work 49 Chapterp 5. Experiment section 50 5.1 General procedure 50 5.2 General synthesis 51 5.2.1 Synthesis of monomers 51 5.2.2 Synthesis of polymers 54 References 57

    (1) J.B. Goodenough, and Y. Kim, Chem. Mater., 2009, 22, 587-603.
    (2) T. Kennedy, M. Brandon, and K.M. Ryan, Adv. Mater., 2016,
    (3) M. Hu, X. Pang, and Z. Zhou, J. Power Sources, 2013, 237, 229-
    242.
    (4) M.T. McDowell, S.W. Lee, W.D. Nix, and Y. Cui, Adv. Mater., 2013,
    25, 4966-4985.
    (5) J.B. Goodenough, and K.-S. Park, J. Am. Chem. Soc., 2013, 135,
    1167-1176.
    (6) U. Kasavajjula, C. Wang, and A.J. Appleby, J. Power Sources,
    2007, 163, 1003-1039.
    (7) B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, and R.P.
    Raffaelle, Energy Environ. Sci., 2009, 2, 638-654.
    (8) J. Li, and J. Dahn, J. Electrochem. Soc., 2007, 154, A156-A161.
    (9) B. Boukamp, G. Lesh, and R. Huggins, J. Electrochem. Soc., 1981,
    128, 725-729.
    (10) C.K. Chan, R.N. Patel, M.J. O’connell, B.A. Korgel, and Y. Cui,
    ACS Nano, 2010, 4, 1443-1450.
    (11) B.D. Assresahegn, and D. Bélanger, J. Power Sources, 2017, 345,
    190-201.
    (12) H. Wang, J. Xie, S. Zhang, G. Cao, and X. Zhao, RSC Adv., 2016,
    6, 69882-69888.
    (13) J.H. Ryu, J.W. Kim, Y.-E. Sung, and S.M. Oh, Electrochem. Solid-
    State Lett., 2004, 7, A306-A309.
    (14) M. Obrovac, and L. Krause, J. Electrochem. Soc., 2007, 154,
    A103-A108.
    (15) J. Christensen, and J. Newman, J. Solid State Electrochem.,
    2006, 10, 293-319.
    (16) S. Renganathan, G. Sikha, S. Santhanagopalan, and R.E. White, J.
    Electrochem. Soc., 2010, 157, A155-A163.
    (17) X. Zuo, J. Zhu, P. Müller-Buschbaum, and Y.-J. Cheng, Nano
    Energy, 2017, 31, 113-143.
    (18) W.-R. Liu, M.-H. Yang, H.-C. Wu, S. Chiao, and N.-L. Wu,
    Electrochem. Solid-State Lett., 2005, 8, A100-A103.
    (19) J. Li, R. Lewis, and J. Dahn, Electrochem. Solid-State Lett.,
    2007, 10, A17-A20.
    (20) J.-S. Bridel, T. Azais, M. Morcrette, J.-M. Tarascon, and
    D. Larcher, Chem. Mater., 2009, 22, 1229-1241.
    (21) A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R.
    Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, and G. Yushin,
    ACS Appl. Mater. Interfaces, 2010, 2, 3004-3010.
    (22) H.-K. Park, B.-S. Kong, and E.-S. Oh, Electrochem. Commun.,
    2011, 13, 1051-1053.
    (23) G. Liu, S. Xun, N. Vukmirovic, X. Song, P. Olalde‐Velasco, H.
    Zheng, V.S. Battaglia, L. Wang, and W. Yang, Adv. Mater., 2011,
    23, 4679-4683.
    (24) S.-J. Park, H. Zhao, G. Ai, C. Wang, X. Song, N. Yuca, V.S.
    Battaglia, W. Yang, and G. Liu, J. Am. Chem. Soc., 2015, 137,
    2565-2571.
    (25) M. Wu, X. Xiao, N. Vukmirovic, S. Xun, P.K. Das, X. Song, P.
    Olalde-Velasco, D. Wang, A.Z. Weber, and L.-W. Wang, J. Am.
    Chem. Soc., 2013, 135, 12048-12056.
    (26) Y.K. Jeong, T.-w. Kwon, I. Lee, T.-S. Kim, A. Coskun, and J.W.
    Choi, Nano Lett., 2014, 14, 864-870.
    (27) J. Liu, Q. Zhang, Z.-Y. Wu, J.-H. Wu, J.-T. Li, L. Huang, and
    S.-G. Sun, Chem. Commun., 2014, 50, 6386-6389.
    (28) Z.-J. Han, N. Yabuuchi, S. Hashimoto, T. Sasaki, and S. Komaba,
    ECS Electrochem. Lett., 2013, 2, A17-A20.
    (29) S. Lim, H. Chu, K. Lee, T. Yim, Y.-J. Kim, J. Mun, and T.-H.
    Kim, ACS Appl. Mater. Interfaces, 2015, 7, 23545-23553.
    (30) C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, and Z. Bao, Nat.
    Chem., 2013, 5, 1042-1048.
    (31) D. Azarian, S.S. Dua, C. Eaborn, and D.R. Walton, J. Organomet.
    Chem., 1976, 117, C55-C57.
    (32) D. Milstein, and J. Stille, J. Am. Chem. Soc., 1978, 100, 3636-
    3638.
    (33) J.K. Stille, Angew. Chem., 1986, 98, 504-519.
    (34) J.K. Stille, Angew. Chem. Int. Ed., 1986, 25, 508-524.
    (35) N. Miyaura, and A. Suzuki, J. Chem. Soc., Chem. Commun., 1979,
    866-867.
    (36) T. Ishiyama, N. Matsuda, N. Miyaura, and A. Suzuki, J. Am. Chem.
    Soc., 1993, 115, 11018-11019.
    (37) T. Ishiyama, M. Murata, and N. Miyaura, J. Org. Chem., 1995, 60,
    7508-7510.
    (38) K. Burgess, and M.J. Ohlmeyer, Chem. Rev., 1991, 91, 1179-1191.
    (39) M. Murata, S. Watanabe, and Y. Masuda, J. Org. Chem., 1997, 62,
    6458-6459.
    (40) H. Li, C.C. Johansson Seechurn, and T.J. Colacot, ACS Catal.,
    2012, 2, 1147-1164.
    (41) S.Z. Tasker, E.A. Standley, and T.F. Jamison, Nature, 2014, 509,
    299.
    (42) G.-P. Lu, K.R. Voigtritter, C. Cai, and B.H. Lipshutz, J. Org.
    Chem., 2012, 77, 3700-3703.
    (43) A.J. Lennox, and G.C. Lloyd-Jones, Chem. Soc. Rev., 2014, 43,
    412-443.
    (44) I. Maluenda, and O. Navarro, Molecules, 2015, 20, 7528-7557.
    (45) L. Ackermann, R. Vicente, and A.R. Kapdi, Angew. Chem. Int. Ed.,
    2009, 48, 9792-9826.
    (46) A. Facchetti, L. Vaccaro, and A. Marrocchi, Angew. Chem. Int.
    Ed., 2012, 51, 3520-3523.
    (47) M. Se, J. Papillon, E. Schulz, and M. Lemaire, Tetrahedron
    Lett., 1999, 40, 5873-5876.
    (48) S.I. Gorelsky, D. Lapointe, and K. Fagnou, J. Am. Chem. Soc.,
    2008, 130, 10848-10849.
    (49) S.I. Gorelsky, Coord. Chem. Rev., 2013, 257, 153-164.
    (50) Q. Wang, R. Takita, Y. Kikuzaki, and F. Ozawa, J. Am. Chem.
    Soc., 2010, 132, 11420-11421.
    (51) L.G. Mercier, B.R. Aïch, A. Najari, S. Beaupré, P. Berrouard, A.
    Pron, A. Robitaille, Y. Tao, and M. Leclerc, Polym. Chem., 2013,
    4, 5252-5260.
    (52) M. Wakioka, Y. Kitano, and F. Ozawa, Macromol., 2013, 46, 370-
    374.
    (53) P. Coppo, and M.L. Turner, J. Mater. Chem., 2005, 15, 1123.
    (54) Z.B. Henson, P. Zalar, X. Chen, G.C. Welch, T.-Q. Nguyen, and
    G.C. Bazan, J. Mater. Chem. A, 2013, 1, 11117-11120.
    (55) J.J. Dressler, S.A. Miller, B.T. Meeuwsen, A.M.S. Riel, and B.J.
    Dahl, Tetrahedron, 2015, 71, 283-292.
    (56) N. Yuca, H. Zhao, X. Song, M.F. Dogdu, W. Yuan, Y. Fu, V.S.
    Battaglia, X. Xiao, and G. Liu, ACS Appl. Mater. Interfaces,
    2014, 6, 17111-17118.
    (57) Z. Xue, D. He, and X. Xie, J. Mater. Chem. A, 2015, 3, 19218-
    19253.
    (58) C.C. Nguyen, T. Yoon, D.M. Seo, P. Guduru, and B.L. Lucht, ACS
    Appl Mater Interfaces, 2016, 8, 12211-20.
    (59) Kuo, T.-H., Master Thesis at Dept. of Chem. Eng. at National
    Tsing Hua Univ. 2014, 49.

    QR CODE