簡易檢索 / 詳目顯示

研究生: 蔡一豪
Tsai, Yi-Hao
論文名稱: 拋物型方程的遠古解問題
Ancient Solution to Parabolic Systems
指導教授: 宋瓊珠
Sung, Chiung-Jue Anna
口試委員: 高淑蓉
Kao, Shu-Jung
邱鴻麟
Chiu, Hung-Lin
黃榮宗
Huang, Rung-Tzung
饒維明
Nhieu, Duy-Minh
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 168
中文關鍵詞: 拉普拉斯-貝爾特拉米算子霍奇-拉普拉絲調和形式熱方程多項式增長遠古解調和形式熱流完備黎曼流行維度估計均勻等價
外文關鍵詞: Laplace-Beltrami operator, Hodge Laplace operator, harmonic form, heat equation, polynomial growth, ancient solution, harmonic form heat flow, complete Riemannian manifold, dimension estimate, uniformly equivalent
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱方程的遠古解問題為數學中一個重要的主題。首先,我們聚焦在完備黎曼流行上的拉普拉斯-貝爾特拉米算子並學習多項式增長之調和函數空間的維度估計。其次,我們研究多項式增長之熱方程原古解的空間並估計其維度。最後,我們研究完備黎曼流行上霍奇-拉普拉斯算子對應的熱方程之解。在具有多項式體積增長的完備黎曼流行上,我們給出多項式增長熱流調和形式的原古解之空間的維度估計,其維度估計的上界和相對應的調和形式空間之維度相關。


    The study of ancient solutions to the heat equation, as a prototypical parabolic partial differential equation, is one of important subjects in mathematics.
    We first focus on the Laplace-Beltrami operator on complete Riemannian manifolds and study the dimension estimate for the space of harmonic functions with polynomial growth. Secondly, we study the space of ancient solution to the heat equation with polynomial growth and give the dimension estimate on such a space. Finally, we study the heat equation associated to the Hodge Laplace operator on complete Riemannian manifolds. If the manifold has polynomial volume growth, we have the dimension estimate for the space of the polynomial growth ancient solutions to harmonic form heat flow. Such a dimension is bounded by that of the space of harmonic forms.

    Abstract (Chinese) I Abstract II Acknowledgements (Chinese) III Contents V 1 Introduction 1 2 Preliminaries 8 2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Hodge Laplace operator on manifolds . . . . . . . . . . . . . . . . . 15 3 Polynomial Growth Harmonic Function and Ancient Solution to The Heat Equation 29 3.1 Dimension estimate for polynomial growth harmonic functions . . . 30 3.2 Gradient estimate for positive solutions of the heat equation . . . . 42 3.3 Positive ancient solutions and Liouville property . . . . . . . . . . . 51 3.4 Positive ancient solutions . . . . . . . . . . . . . . . . . . . . . . . . 63 3.5 Ancient solution of polynomial growth . . . . . . . . . . . . . . . . 72 4 Polynomial Growth Harmonic Form and Stability under Uniformly Equivalent Metrics 83 4.1 Harmonic section of polynomial growth . . . . . . . . . . . . . . . . 84 4.2 Eigenvalue estimate under the Dirichlet boundary condition . . . . 91 4.3 Eigenvalue estimate under the absolute boundary condition and the relative boundary condition . . . . . . . . . . . . . . . . . . . . . . 99 4.4 Harmonic form on geodesic balls and dimension estimates . . . . . 109 4.5 Stability under uniformly equivalent change of the metric . . . . . . 115 5 Polynomial Growth Ancient Solution to Harmonic Form 126 5.1 Polynomial growth ancient solution to harmonic form heat flow . . 127 Appendix 144 A Sobolev inequality and Ricci curvature bounded from below . . . . 144 B Laplace transforms and completely monotone functions . . . . . . . 148 C Eigenvalues of Hodge Laplacian on geodesic balls . . . . . . . . . . 156 Bibliography 165

    [C-M1] T. Colding and W. Minicozzi, On function theory on spaces with a lower
    Ricci curvature bound, Math. Res. Lett. 3 (1996) 241–246.
    [C-M2] T. Colding and W. Minicozzi, Generalized Liouville properties of manifolds,
    Math. Res. Lett. 3 (1996) 723–729.
    [C-M3] T. Colding and W. Minicozzi, Harmonic functions with polynomial
    growth, J. Diff. Geom. 46 (1997) 1–77.
    [C-M4] T. Colding and W. Minicozzi, Harmonic functions on manifolds, Ann.
    Math. 146 (1997) 725–747.
    [C-M5] T. Colding and W. Minicozzi, Weyl type bounds for harmonic functions,
    Invent. Math. 131 (1998) 257–298.
    [C-M6] T. Colding and W. Minicozzi, Liouville theorems for harmonic sections
    and applications, Comm. Pure Appl. Math. 51 (1998) 113–138.
    [C-M7] T. Colding and W. Minicozzi , Optimal bounds for ancient caloric functions,
    Duke Math. J., 170 (2021) 4171–4182.
    [C-L] S. Y. Cheng and P. Li, Heat kernel estimates and lower bound of eigenvalues,
    Comment. Math. Helv. 56 (1981) 327–338.
    [C-S] J.-T. R. Chen and C.-J. A. Sung, Dimension estimate of polynomial
    growth harmonic forms, J. Differential Geom., 73 (2006) 167–183.
    D] J. D´odziuk, Eigenvalues of the Laplacian on forms, Proc. Amer. Math
    Soc., 85 (1982) 438–443.
    [D-M] J. D´odziuk and J. McGowan, The spectrum of the Hodge Laplacian for
    a degenerating family of hyperbolic three manifolds, Trans. Amer. Math
    Soc., 347, 6 (1995) 1981–1995.
    [E] L. C. Evans, Partial differential equations, second ed., Amer. Math. Soc.
    (2010).
    [H-K] P. Hajlasz and P. Koskela, Sobolev meets Poincar´e, C. R. Acad. Sci.
    300 (1995) 1211–1215.
    [Ka] F. I. Karpeleviˇc, The geometry of geodesics and the eigenfunctions of the
    Beltrami-Laplace operator on symmetric spaces, Trans. Moscow Math.
    Soc. 14 (1965) 51–199.
    [L1] P. Li, On The Sobolev constant and the p-Spactrum of a compact Riemannian
    Manifold, Ann. scient. Ec. Norm. Sup., 13 (1980) 451–469.
    [L2] P. Li, Harmonic sections of polynomial growth, Math. Research Letters,
    4 (1997) 35–44.
    [L3] P. Li, Geometric Analysis, Cambridge University Press. (2012).
    [L-W1] P. Li and J. Wang, Counting Massive sets and Dimensions of Harmonic
    functions, J. Diff. Geom., 53 (1999), no. 2, 237–278.
    [L-W2] P. Li and J. Wang, Mean value inequalities, Indiana Univ. Math. J., 48
    (1999), no. 4, 1257–1283.
    [L-S] P. Li and R. Schoen. Lp and mean value properties of subharmonic
    functions on Riemannian manifolds, Acta Math., 153 (1984) 279–301.
    [L-T1] P. Li and L. F. Tam, Linear growth harmonic functions on a complete
    manifold, J. Diff. Geom., 29 (1989) 421–425.
    [L-T2] P. Li and L. F. Tam, Complete surfaces with finite total curvature, J.
    Diff. Geom., 33 (1991) 139–168.
    [L-Y] P. Li and S. T. Yau, On the parabolic kernel of the Schr¨odinger operator
    , Acta Math. 156 (1986) 153–201.
    [L-Z] F. H. LIN and Q. S. ZHANG, On ancient solutions of the heat equation,
    Comm. Pure Appl. Math. 72 (2019) no. 9, 2006–2028.
    [M] M. Murata, Structure of positive solutions to (−Δ + V )u = 0 in Rn,
    Duke Math. J. 53 (1986) no. 4, 869–943.
    [P] J. H. Park, Spectral Geometry of Riemannian Submersions, Rocky Mt.
    J. Math., 30 (2000) no.1, 353–369.
    [S-C1] L. Saloff-Coste, Uniformly Elliptic operators on Riemannian manifolds,
    J. Diff. Geom., 36 (1992) 417–450.
    [S-C2] L. Saloff-Coste, A note on Poincar´e, Sobolev, and Harnack inequalities,
    Duke Math. J., I.M.R.N. 2 (1992) 27–38.
    [S-S-V] R. L. Schilling, R. Song and Z. Vondraˇcek, Bernstein Functions. Theory
    and Applications, 2-nd ed., De Gruyter, Berlin, (2012).
    [S-T] C.-J. A. Sung and Y.H. Tsai, Polynomial growth ancient solutions to
    harmonic form heat flow, Arch. Math., 29 (2022).
    [S-Z] P. Souplet and Qi S. Zhang Sharp gradient estimate and Yau’s Liouville
    theorem for the heat equation on noncompact manifolds, Bull. London
    Math. Soc. 38 (2006) no. 6, 1045–1053.
    [V] N. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal.
    63 (1985) 240–260.
    [Y] S. T. Yau, Harmonic functions on complete Riemannian manifolds,
    Comm. Pure Appl. Math. 28 (1975) 201–228.

    QR CODE