研究生: |
蔡一豪 Tsai, Yi-Hao |
---|---|
論文名稱: |
拋物型方程的遠古解問題 Ancient Solution to Parabolic Systems |
指導教授: |
宋瓊珠
Sung, Chiung-Jue Anna |
口試委員: |
高淑蓉
Kao, Shu-Jung 邱鴻麟 Chiu, Hung-Lin 黃榮宗 Huang, Rung-Tzung 饒維明 Nhieu, Duy-Minh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 168 |
中文關鍵詞: | 拉普拉斯-貝爾特拉米算子 、霍奇-拉普拉絲 、調和形式 、熱方程 、多項式增長 、遠古解 、調和形式熱流 、完備黎曼流行 、維度估計 、均勻等價 |
外文關鍵詞: | Laplace-Beltrami operator, Hodge Laplace operator, harmonic form, heat equation, polynomial growth, ancient solution, harmonic form heat flow, complete Riemannian manifold, dimension estimate, uniformly equivalent |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱方程的遠古解問題為數學中一個重要的主題。首先,我們聚焦在完備黎曼流行上的拉普拉斯-貝爾特拉米算子並學習多項式增長之調和函數空間的維度估計。其次,我們研究多項式增長之熱方程原古解的空間並估計其維度。最後,我們研究完備黎曼流行上霍奇-拉普拉斯算子對應的熱方程之解。在具有多項式體積增長的完備黎曼流行上,我們給出多項式增長熱流調和形式的原古解之空間的維度估計,其維度估計的上界和相對應的調和形式空間之維度相關。
The study of ancient solutions to the heat equation, as a prototypical parabolic partial differential equation, is one of important subjects in mathematics.
We first focus on the Laplace-Beltrami operator on complete Riemannian manifolds and study the dimension estimate for the space of harmonic functions with polynomial growth. Secondly, we study the space of ancient solution to the heat equation with polynomial growth and give the dimension estimate on such a space. Finally, we study the heat equation associated to the Hodge Laplace operator on complete Riemannian manifolds. If the manifold has polynomial volume growth, we have the dimension estimate for the space of the polynomial growth ancient solutions to harmonic form heat flow. Such a dimension is bounded by that of the space of harmonic forms.
[C-M1] T. Colding and W. Minicozzi, On function theory on spaces with a lower
Ricci curvature bound, Math. Res. Lett. 3 (1996) 241–246.
[C-M2] T. Colding and W. Minicozzi, Generalized Liouville properties of manifolds,
Math. Res. Lett. 3 (1996) 723–729.
[C-M3] T. Colding and W. Minicozzi, Harmonic functions with polynomial
growth, J. Diff. Geom. 46 (1997) 1–77.
[C-M4] T. Colding and W. Minicozzi, Harmonic functions on manifolds, Ann.
Math. 146 (1997) 725–747.
[C-M5] T. Colding and W. Minicozzi, Weyl type bounds for harmonic functions,
Invent. Math. 131 (1998) 257–298.
[C-M6] T. Colding and W. Minicozzi, Liouville theorems for harmonic sections
and applications, Comm. Pure Appl. Math. 51 (1998) 113–138.
[C-M7] T. Colding and W. Minicozzi , Optimal bounds for ancient caloric functions,
Duke Math. J., 170 (2021) 4171–4182.
[C-L] S. Y. Cheng and P. Li, Heat kernel estimates and lower bound of eigenvalues,
Comment. Math. Helv. 56 (1981) 327–338.
[C-S] J.-T. R. Chen and C.-J. A. Sung, Dimension estimate of polynomial
growth harmonic forms, J. Differential Geom., 73 (2006) 167–183.
D] J. D´odziuk, Eigenvalues of the Laplacian on forms, Proc. Amer. Math
Soc., 85 (1982) 438–443.
[D-M] J. D´odziuk and J. McGowan, The spectrum of the Hodge Laplacian for
a degenerating family of hyperbolic three manifolds, Trans. Amer. Math
Soc., 347, 6 (1995) 1981–1995.
[E] L. C. Evans, Partial differential equations, second ed., Amer. Math. Soc.
(2010).
[H-K] P. Hajlasz and P. Koskela, Sobolev meets Poincar´e, C. R. Acad. Sci.
300 (1995) 1211–1215.
[Ka] F. I. Karpeleviˇc, The geometry of geodesics and the eigenfunctions of the
Beltrami-Laplace operator on symmetric spaces, Trans. Moscow Math.
Soc. 14 (1965) 51–199.
[L1] P. Li, On The Sobolev constant and the p-Spactrum of a compact Riemannian
Manifold, Ann. scient. Ec. Norm. Sup., 13 (1980) 451–469.
[L2] P. Li, Harmonic sections of polynomial growth, Math. Research Letters,
4 (1997) 35–44.
[L3] P. Li, Geometric Analysis, Cambridge University Press. (2012).
[L-W1] P. Li and J. Wang, Counting Massive sets and Dimensions of Harmonic
functions, J. Diff. Geom., 53 (1999), no. 2, 237–278.
[L-W2] P. Li and J. Wang, Mean value inequalities, Indiana Univ. Math. J., 48
(1999), no. 4, 1257–1283.
[L-S] P. Li and R. Schoen. Lp and mean value properties of subharmonic
functions on Riemannian manifolds, Acta Math., 153 (1984) 279–301.
[L-T1] P. Li and L. F. Tam, Linear growth harmonic functions on a complete
manifold, J. Diff. Geom., 29 (1989) 421–425.
[L-T2] P. Li and L. F. Tam, Complete surfaces with finite total curvature, J.
Diff. Geom., 33 (1991) 139–168.
[L-Y] P. Li and S. T. Yau, On the parabolic kernel of the Schr¨odinger operator
, Acta Math. 156 (1986) 153–201.
[L-Z] F. H. LIN and Q. S. ZHANG, On ancient solutions of the heat equation,
Comm. Pure Appl. Math. 72 (2019) no. 9, 2006–2028.
[M] M. Murata, Structure of positive solutions to (−Δ + V )u = 0 in Rn,
Duke Math. J. 53 (1986) no. 4, 869–943.
[P] J. H. Park, Spectral Geometry of Riemannian Submersions, Rocky Mt.
J. Math., 30 (2000) no.1, 353–369.
[S-C1] L. Saloff-Coste, Uniformly Elliptic operators on Riemannian manifolds,
J. Diff. Geom., 36 (1992) 417–450.
[S-C2] L. Saloff-Coste, A note on Poincar´e, Sobolev, and Harnack inequalities,
Duke Math. J., I.M.R.N. 2 (1992) 27–38.
[S-S-V] R. L. Schilling, R. Song and Z. Vondraˇcek, Bernstein Functions. Theory
and Applications, 2-nd ed., De Gruyter, Berlin, (2012).
[S-T] C.-J. A. Sung and Y.H. Tsai, Polynomial growth ancient solutions to
harmonic form heat flow, Arch. Math., 29 (2022).
[S-Z] P. Souplet and Qi S. Zhang Sharp gradient estimate and Yau’s Liouville
theorem for the heat equation on noncompact manifolds, Bull. London
Math. Soc. 38 (2006) no. 6, 1045–1053.
[V] N. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal.
63 (1985) 240–260.
[Y] S. T. Yau, Harmonic functions on complete Riemannian manifolds,
Comm. Pure Appl. Math. 28 (1975) 201–228.