簡易檢索 / 詳目顯示

研究生: 黃建誌
Chien-Chih Huang
論文名稱: 結合微撓性機構應用於光切換器之靜電抓爬式致動器分析與設計
An Analysis and Design of Scratch Drive Actuator for Micro Compliant Mechanism Applied to Optical Switch
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 82
中文關鍵詞: 靜電式致動器致動器撓性機構光切換器
外文關鍵詞: SDA, scratch drive actuator, compliant mehcanism, optical switch
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的研究重點在於分析與設計SDA致動器以結合撓性雙穩態機構應用於光切換器。在理論分析上,分別介紹SDA的致動原理與連接SDA微致動器的彈簧系統 : 在致動力方面,利用虛功法(Principle of virtual work)求得電壓與靜電力的關係,更進一步分析SDA之幾何形狀在靜電力作用下產生之形變與輸出力的關係 ; 在彈簧系統方面,由懸臂樑觀念求出其等效彈簧常數(Spring constant),並分析懸臂樑撓曲時的內應力。在製程方面分為前段薄膜沉積與後段蝕刻釋放兩部份,前段製程係委託美國Cronos Integrated Microsystems公司的多人共用製程(Multi-User MEMS Processes or MUMPsTM) ; 後段製程則是使用液體強酸腐蝕氧化矽後以清洗溶液去除強酸,最後以蒸發方式去除清洗溶液。在整體元件的設計方面,同時考慮MUMPs共用製程的限制與撓性雙穩態機構的特性,設計出符合供給式或保護式需求條件的光切換器,並且以MEMCAD軟體進一步模擬設計結果。在實驗量測方面,除討論SDA雙向推動雙穩態撓性機構、SDA單向拉動雙穩態撓性機構與SDA旋轉馬達三種元件的表現外,也對蝕刻釋放與電腦模擬作一探討。結果顯示本文提出之設計具可行性,此外並建議出未來深入研究的目標。


    This thesis presents the design of a scratch drive actuator (SDA) for the bistable compliant mechanism applied to optical switching devices. In accordance with the force needed to drive the mechanism, the relationship among SDA output force, geometries, and applied voltage is first constructed by employing the principle of virtual work. The stresses and the equivalent constant of the spring system connected to SDA are calculated by assuming the configuration of the SDA as an overhanging beam. The SDA and the associated bistable compliant mechanism that are fitted to the demand of provision or protective optical switch are designed by considering the characteristics of MUMPsTM fabrication process. There are two types of SDA in combination with both the bistable mechanism and step motor being designed and fabricated as illustrative samples. The chip well defined in MUMPsTM is released by immersing the chip in a bath of HF. It is followed by cleaning in DI water and IPA on a hot plate at 200oC to reduce stiction. The samples are inspected by OM and SEM, respectively. The experimental and analytical results indicate the practicability of the proposed design concept.

    目錄 摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 背景 1.2 文獻回顧 1.3 研究內容與範圍 第二章 理論分析 2.1 等效彈簧系統 2.1.1 懸臂樑形變之等效彈簧常數 2.1.2 橫樑之兩端為固定端之等效彈簧系數 2.1.3 應力分佈 2.2 電容板之靜電力分析 2.2.1電池-電容系統中的能量 2.2.2 電容板間的靜電力 2.3 SDA的形變 2.3.1 SDA高電壓差輸出力 2.3.2 SDA的爬行步距 第三章 MUMPs共用製程 3.1 MUMPs 薄膜沉積 3.1.1 矽基材、氮化矽與第零層多晶矽 3.1.2 第一層氧化矽、第一層多晶矽與第二層氧化矽 3.1.3 第二層多晶矽與金屬層 3.2 元件蝕刻釋放 3.2.1 蝕刻孔的設計 3.2.2 蝕刻釋放 第四章 雙穩態撓性機構與SDA的結構設計 4.1 MUMPs製程安全設計參數 4.2 雙穩態撓性機構 4.3 等效彈簧 4.4 SDA參數設計 4.4.1 軸襯(Bushing)的製作方法 4.4.2 SDA的輸出力 4.5 防止結構層黏底的設計 4.5.1 凹洞光罩的設計 4.5.2 靜電屏蔽層(Shield)的設計 4.6 SDA旋轉馬達 4.6.1 軸承的設計 第五章 實驗與量測 5.1 實驗設備與實驗步驟 5.1.1 實驗量測設備 5.1.2 實驗步驟 5.2 SDA單向拉動雙穩態撓性機構實驗量測與結果67 5.2.1 元件介紹與實驗結果 5.2.2 結果討論 5.3 SDA旋轉馬達實驗量測與結果 5.3.1元件介紹與實驗結果 5.3.2 結果討論 5.4 SDA雙向推動雙穩態撓性機構實驗量測與結果 5.4.1元件介紹與實驗結果 5.4.2 結果討論 5.5 電腦模擬與蝕刻釋放的結果討論 5.5.1電腦模擬結果與討論 5.5.2 蝕刻釋放結果與討論 第六章 總結 參考資料

    參考文獻
    1. Ramaswami, R and Sivarajan, K. N., 1997, Optical Networks: A Practical Perspective, Morgan Kaufmann Publishers, Inc.
    2. http://www.lightreading.com/document.asp?doc_id=2254&print=true
    3. Jensen, B. D., Howell, L. L., and Salmon, L. G., 1999, “Design of Two-Link, In-Plane, Bistable Compliant Micro-Mechanisms,” ASME Journal of Mechanical Design, Vol. 121, September, pp. 416-423.
    4. Parkinson, M. B., Jensen, B. D., and Roach, G. M., 2000, “Optimization-Based Design of a Fully-Compliant Bistable Micromechanism,” Proceedings of DETC’00 ASME 2000 Design Engineering Technical Conferences, DETC2000/MECH-14119.
    5. Toshiyoshi, H. and Fujita, H., 1996, “Electrostatic Micro Torsion Mirrors for an Optical Switch Matrix,” Journal of Microelectromechanical Systems, Vol. 5, No. 4, December, pp. 231-237.
    6. Marxer, C. and de Rooij, N. F., 1999 “Micro-Opto-Mechanical 2□2 Switch for Single-mode Fibers Based on Plasma-Etched Silicon Mirror and Electrostatic Actuation,” Journal of Lightwave Technology, Vol. 17, No. 1, pp. 2-6.
    7. Chen, R. T., Nguyen, H., and Wu, M. C., 1999, “A High-Speed Low-Voltage Stress-Induced Micromachined 2□2 Optical Switch,” IEEE Photonics Technology Letters, Vol.11, No. 11, pp. 1396-1398.
    8. Hoffmann, M., Kopka, P., and Voges, E., 1999 “All-Silicon Bistable Micromechanical Fiber Switch Based on Advanced Bulk Micromachining,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, January/February, pp. 46-51.
    9. Lin, L. Y., Goldstein, E. L., and Tkach, R. W., 1999, “Free-Space Micromachined Optical Switches for Optical Networking,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 1, January/February, pp. 4-9.
    10. Matsuura, T., Fukami, T., Chabloz, M., Sakai, Y., Izuo, S.I., Uemura, A., Kaneko, S.I., Tsutsumi, K., and Hamanaka, K., 2000, “Silicon Micro Optical Switching Device with an Electromagnetically Operated Cantilever,” Sensors and Actuators A, Vol 83, pp. 220-224.
    11. Fujita H., 1989, “Microactuators for Micro-motion System,” The Third Toyota Conference, pp. 279-295.
    12. Halg, B., 1990, “On a Nonvolatile Memory Cell Based on Micro-electro-mechanics,” Proceedings IEEE Workshop on MEMS, pp. 172-176.
    13. Vangbo, M., and Backlund, Y., 1998, “A Lateral Symmetrically bistable buckled beam,” Journal of Micromechanics and Microengineering, Vol. 8, pp. 29-32.
    14. Zhu, J., Akiyama, t., and Shono, K., 1993, “A Micro Step Motion of Polysilicon Structures on Silicon Substrate,” IEEE Japan Int’l Electronics Manufacturing Technology Symposium, pp. 85-88.
    15. Akiyama, T. and Shono, K., 1993, “Controlled Stepwise Motion in Polysilicon Microstructures,” Journal of Microelectromechanical Systems, Vol. 2, No. 3, September, pp. 106-110.
    16. Akiyama, T. and Fujita, H., 1995, “A Quantitative Analysis of Scratch Drive Actuator Using Buckling Motion,” IEEE Micro Electro Mechanical Systems, pp. 310-315.
    17. Langlet, P., Collard, D., Akiyama, T., and Fujita, H., 1997, “A Quantitative Analysis of Scratch Drive Actuation for intergrated X/Y Motion System,” Transducers ’97 International Conference on Solid-State Sensors and Actuators Chicago, June, pp. 773-776.
    18. Mita, Y., Oba, T., Hashiguchi, G., and Mita, M., “An Inverted Scratch-Drive-Actuators Array for Large Area Actuation of External Objects,” Transducers ’99
    19. Fukuta, Y., Collard, D., Akiyama, T., Yang, E. H., and Fujita, H., “Microactuated Self-Assembling of 3D Polysilicon Structures with Reshaping Technology,” IEEE Tenth Annual International Workshop on Micro Electro Mechanical Systems, pp. 477-481.
    20. Lin, L. Y., Shen, J. L., Lee, S. S., Su, G. D., and Wu, M. C., 1993, “ Microactuated Micro-xyz Stages for Free-Space Micro-Optical Bench,” Micro Electro Mechanical Systems, 1997. MEMS '97, Proceedings, IEEE., Tenth Annual International Workshop on , pp. 43-48.
    21. Linderman, R. J., and Bright, V. M., 2000, “Optimized Scratch Drive Actuator for Tethered Nanometer Positioning of Chip-Sized Components,” Solid-State Sensor and Actuator Workshop Hilton Head Island, South Carolina, June, pp. 214-217.
    22. Kladitis, Paul E., Linderman, Ryan J., and Bright, Victor M., 2001, “Solder Self-assembled Micro Axial Flow Fan Driven by Scratch Drive Actuator Rotory Motor,” Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference on, 2001
    23. MUMPs™ Design Handbook, Web Site: www.memsrus.com/cronos/CIMSmain2ie.html
    24. 莊達人, 1999, VLSI製造技術, 第四版, 高立圖書有限公司.
    25. Kovacs, Gregory T.A., 1998, Micromachined Transducers Sourcebook, The McGraw-hill Companies, Inc.
    26. Kim, John Y. and Kim, Chang-Jin, 1997, “Comparative Studyof Various Release Methods for Polysilicon Surface Micromaching,” Micro Electro Mechanical Systems, 1997. MEMS '97, Proceedings, IEEE., Tenth Annual International Workshop on , 1997.
    27. Abe, T., Messner, W. C., and Reed, M. L., 1995, “Effective Methods To Prevent Stiction During Post-Release Etch Processing,” IEEE Micro Electro Mechanical Systems Workshop, Amsterdam, Netherlands, pp. 94-99.
    28. Biebl, M., and Philipsborn, H. von, 1995, “Fracture Strength of Doped and Undoped Polysilicon,” Transducers ’95 Eurosensors LX Proceedings of the 8th International Conference on Solid-State Sensors and Actuators, Stockholm, Sweden, pp. 72-79.
    29. Sharpe, Jr. W. N., Jackson, K., Coles, G., and LaVan, D. A., 2000, “Mechanical Properties of Different Polysilicons,” ASME 2000, Micro-Electro-Mechanical Systems, MEMS-Vol. 2, pp. 255-259.
    30. 國家高速電腦中心, 2000, 微機電模擬軟體MEMCAD基礎課程訓練教材, 國家高速電腦中心.
    31. Cheng, David K., 1993, Fundamentals of Engineering Electromagnetics, Addison-Wesley Publishing Company, Inc.
    32. Ugural, A. C., 1991, Mechanics of Materials, McGraw-Hill, Inc.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE