簡易檢索 / 詳目顯示

研究生: 黃健羽
Huang, Chien-Yu
論文名稱: The Study of Bio-Application Photo Detectors
生醫應用感測元件與感測電路架構之研究
指導教授: 金雅琴
King, Ya-Chin
林崇榮
Lin, Chrong-Jung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 62
中文關鍵詞: 光感測器畫素低溫多晶矽
外文關鍵詞: photo detector, DPS, LTPS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用CMOS和LTPS的標準製程,設計開發整合主動操控光感測的像素,用於生醫檢定的應用。一般生醫檢測之發光反應的度較小,要有效分辨雜訊與反應訊號是很大的挑戰。在CMOS photo-sensing pixel,採用脈波頻率調變的架構,以獲得高解析度的電子訊號。在本研究中,波長555nm亮度為0.1LUX的光已經在0.35μm CMOS PFM電路順利偵測。利用LTPS製程下實際量測到P-I-N的暗電流和光電流,在波長為470nm照度為10LUX之光訊號下,採用PWM之像素設計可在時脈為250HZ下,有效測出發光反應。


    The goal of this thesis is to develop photo-sensing array, achieving “ bio lab on IC” with CMOS circuit and LTPS panel respectively. To detect low light intensity, PFM (pulse frequency modulation) is a good solution. PWM(pulse width modulation) pixel is another way of extending pixel response resolution. In this work, 0.1LUX light with λ=555 is successfully detected by using PFM circuit realized by CMOS process. To implement the sensing array on LTPS panel, the dark current and photo response of P-I-N diode are analyzed of simulation results of PWM pixel designed to be realized by LTPS process show that 10LUX light can be successfully detect under a clock frequency of 250HZ.

    內文目錄 摘要 i Abstract ii 內文目錄 iii 附圖目錄 iv 表格目錄 vi 第一章 序論 1 1.1 研究動機 1 1.2 章節介紹 2 第二章 回顧 3 2.1 CMOS光感測技術與生物晶片 3 2.1.1 CMOS光感測技術 3 2.1.2 CMOS生物感測晶片 4 2.2 LTPS特性及感光元件 5 2.2.1 LTPS製程和特性 6 2.2.2 LTPS感光元件 6 2.3 小結 7 第三章 金氧半製程生物光感測器之設計 17 3.1 金氧半生物光感測應用 17 3.2 脈波頻率調變像素架構 17 3.3 PFM像素量測結果 19 3.4小結 20 第四章 LTPS生醫反應光感測器之設計 34 4.1 LTPS生物光感測應用 34 4.2 脈波寬度像素架構設計 34 4.2.1 畫素理想輸出 35 4.2.2 非理想輸出 36 4.2.3 消除非匹配效應像素 37 4.3 感測陣列操作 37 4.4 小結 38 第五章 結論 58 參考文獻 60

    [1] T Gregory Drummond, Michael G Hill and Jacqueline K Barton, “Electrochemical DNA sensors,” Nature Biotechnology 21, 1192 – 1199, 2003
    [2] Helmy Eltoukhy, Khaled Salama and Abbas El Gamal, “A 0.18-um CMOS bioluminescence detection lab-on-chip,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 3, MARCH 2006
    [3] Chen Xu, Jiong Li, Yijin Wang, Lu Cheng, Zuhong Lu, and Mansun Chan, “A CMOS-Compatible DNA Microarray Using Optical Detection Together With a Highly Sensitive Nanometallic Particle Protocol,” IEEE ELECTRON DEVICE LETTERS, VOL. 26, NO. 4, APRIL 2005
    [4] Meinrad Schienle, Christian Paulus, Alexander Frey, Franz Hofmann, Birgit Holzapfl, Petra Schindler-Bauer and Roland Thewes, “A Fully Electronic DNA Sensor With 128 Positions and In-Pixel A/D Conversion,” IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 39, NO. 12, DECEMBER 2004
    [5] Somashekar B. Prakash, Nicole M. Nelson, Alfred M. Haas, Victor Jeng and Pamela Abshire,”BioLabs-On-A-Chip: Monitoring Cells Using CMOS Biosensors,” Life Science Systems and Applications Workshop, 2006. P.1-2, 2006
    [6] Babak Ziaie, Antonio Baldi, Ming Lei, Yuandong Gu and Ronald A. Siegel, “Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery,” Advanced Drug Delivery Reviews Volume 56, Issue 2, p.145-172, February 2004
    [7] Honghao Ji and Pamela A. Abshire, “CMOS contact imager for monitoring cultured cells,” Circuits and Systems, 2005. ISCAS 2005. IEEE International Symposium on, 3491- 3494, Vol. 4, May 2005
    [8] Honghao Ji, David Sander, Alfred Haas andPamela A. Abshire, “Contact Imaging: Simulation and Experiment,” IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 8, AUGUST 2007
    [9] Abbas El Gamal and Helmy Eltoukhy, “CMOS Image Sensors,” IEEE CIRCUITS & DEVICES MAGAZINE, Volume 21, Issue 3, p.6-20, 2005
    [10] A. El Gamal, D. X. Yang, and B. Fowler, “Pixel level Processing - Why, What, and How ?” Proceedings of the SPIE, Vol. 3650, p. 2, Jan. 1999
    [11] U. Ringh, C. Jansson, and K. Liddiard, “Readout concept employing a novel on Chip 16 bit ADC for smart IR focal plane arrays,” Proceedings of SPIE, vol. 2745, p.99, Apr. 1996
    [12] T. Inoue, Y. Hamasaki, I. Shimoyama, H. Miura, “Micromanipulation using a microcoil array”, Proc.of IEEE Int. Conf. on Robotics and Automation, Vol. 3, p. 2208-2213, 1996.
    [13] H. Lee, A. M. Purdon, R. M. Westervelt, “Manipulation of biological using a microelectromagnet matrix”, Applied Physics Letters, Vol. 85, No. 6, p. 1063-1065, Aug 2004
    [14] Y. Vygranenko, J. H. Chang, A. Nathan, “Two-dimensional a-Si:H n-i-p photodiode array for low-level light detection”, IEEE Quant. Electronics Journal, Vol. 41, No. 5, p. 697-703, May 2005
    [15]Yung-Hui Yeh, “Brief introduction of LTPS process in ITRI,” 2007
    [16] Weiquan Zhang,Member and Mansun Chan, “A High Gain N-Well/Gate Tied PMOSFET Image Sensor Fabricated from a Standard CMOS Process,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 6, JUNE 2001
    [17] Wen-Jen Chiang, Chih-Yang Chen, Chrong-Jung Lin,Ya-Chin King, An-Thung Cho, Chia-Tian Peng, Chih-Wei Chao, Kun-Chih Lin, and Feng-Yuan Gan, ” Silicon nanocrystal-based photosensor on low-temperature polycrystalline-silicon panels,” APPLIED PHYSICS LETTERS 91, MAY 2007
    [18] Rachel A. Yotter, Linda A. Lee and Denise Michelle Wilson, “Technologies for Monitoring Metabolic Activity in Single Cells—Part I: Optical Methods,” IEEE SENSORS JOURNAL, VOL. 4, NO. 4, AUGUST 2004
    [19] Phillip E. Allen, Douglas R. Holber, “CMOS Analog Circuit Design,” Second Edition, p. 445-447, 2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE