研究生: |
許筌壹 Chuan-I Hsu |
---|---|
論文名稱: |
矽基誘導之Ene型反應與發展醣化木酚素衍生物暨掩飾甲醛奈米粒子作為生物材料 Silicon-Induced Ene-Type Reaction and Development of Glycosylated Nordihydroguaiaretic Acid Derivatives as well as Masked Formaldehyde Nanoparticles as Biological Materials |
指導教授: |
胡紀如
Jih Ru Hwu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 烯醇式醋酸酯 、木酚素 、葡萄糖 、甲醛 、去氧核醣核酸 、氧化鐵奈米 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本篇論文中, 本人發展於合成上有價值之反應,以各式結構3-三甲基矽烷之烯醇式醋酸酯化合物,在高溫下利用矽基引導來進行反應。另外,本人亦合成醣化木酚素衍生物,發展為新一類之抗癌藥物。除此之外,本人也合成新型奈米材料作為新穎之去氧核醣核酸交聯試劑。
在論文的第一部分,本人報導利用矽基引導之電子效應,成功誘導ENE型反應發生。以五種具有各式複雜結構之烯醇式醋酸酯化合物,可成功的氧化生成共軛烯酮,具有不錯的產率。在誘導新ENE型反應中,矽基對碳自由基中間體產生之電子穩定效應(alpha或beta效應),扮演很重要的角色。
在第二部分中,本人合成五種木酚素衍生物,其中兩個為以三氮唑連結不同鏈長之不帶有醣基之木酚素衍生物,其餘三個則是以三氮唑連接不同鍊長之帶有半乳糖或葡萄糖之木酚素衍生物。結果顯示,帶有半乳糖或葡萄糖之木酚素衍生物,對於肝癌細胞具有抑制半數成長之濃度較高於60 10^-6 M。且此帶有醣基之木酚素衍生物其溶水性值亦提高許多。
在第三部分中,本人製備出N-羥甲基酞酰亞胺共軛連接於氧化鐵奈米上之新型生物材料。每一個奈米球經由掃描穿透式電子顯微鏡測出其粒徑大小為6.1-0.8奈米,可利用紫外光作為釋放甲醛分子的板機。此奈米材料具有高局部濃度的提升作用,在低濃度時可保持對去氧核醣核酸交聯的能力。
In this thesis, I developed a synthetically valuable reaction of various 3-trimetylsilyl enol acetates that is induced by silicon under thermal conditions. I also synthesized the glycosylated nordihydroguaiaretic acid (NDGA) derivatives to act as a new class of anti-caner agents. Furthermore, new nanomaterials were synthesized as a novel DNA cross-linking agent.
In part 1 of this thesis, I reported the success in utilizing the electronic effect of silicon to induce an ene-type reaction. Five enolate substrates with varied structural complexity were successfully oxidized to the corresponding enones in satisfactory yields (51–77%). The electronic stabilizing effect of silicon (□ or □ effect) on a carboradical intermediate plays a vital role in the induction of this new ene-type reaction.
In part 2, I synthesized five new NDGA derivatives, among them two contain different lengths of triazole-linkage without any sugar moiety, and the other three containing different triazole-length linkage with galactose or glucose moiety. The effects of glucosyl or galactosyl derivatives were showed suppression of growth rate in Hep 3B cell lines at the dose levels higher than 60 □M. The resultant NDGA derivatives with sugar units could greatly increase the solubility in water.
In part 3, I successfully prepared new biological materials conjugate the N-hydroxymethyl-phthalimide on the iron oxide. Each Fe3O4 nanopartiles was with diameter 6.1 □ 0.8 nm by TEM and UV light could be as a trigger to release formaldehyde. This nanomaterial improved the cross-linking potency at low concentration because of the high local density.
Part I
References
1. For recent reviews, see: (a) Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 3173–3199. (b) Lambert, J. B.; Zhao, Y.; Emblidge, R. W.; Salvador, L. A.; Liu, X.; So, J.-H.; Chelius, E. C. Acc. Chem. Res. 1999, 32, 183–190. (c) Bassindale, A. R.; Glynn, S. J.; Taylor, P. G. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York USA, 1998; Vol. 2, Part 1, Chapter 7. (d) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063–2192.
2. Brook, A. G. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York USA, 1998; Vol. 2, Part 2, Chapter 21.
3. Steinmetz, M. G. Chem. Rev. 1995, 95, 1527–1588.
4. Kako, M.; Nakadaira, Y. Coordin. Chem. Rev. 1998, 176, 87–112.
5. Tamai, T.; Hayamizu, T.; Mizuno, K. In Handbook of Photochemistry and Photobiology; Nalwa, H. S., Eds.; American Scientific Publishers: Stevenson Ranch, CA USA, 2003; Vol. 1, pp 125–156.
6. Fuchigami, T. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York USA, 1998; Vol. 2, Part 2, Chapter 20.
7. Zhuikov, V. V. Russ. J. Electrochem. 2000, 36, 117–127.
8. Hwu, J. R.; Tsay, S.-C.; Lin, L. C.; Chueh, L. L. J. Am. Chem. Soc. 2001, 123, 5104–5105.
9. Kaimakliotis, C.; Fry, A. J. J. Org. Chem. 2003, 68, 9893–9898.
10. Hwu, J. R.; Furth, P. S. J. Am. Chem. Soc. 1989, 111, 8834–8841.
11. Furth, P. S.; Hwu, J. R. J. Am. Chem. Soc. 1989, 111, 8842–8849.
12. Hwu, J. R.; Gilbert, B. A.; Lin, L. C.; Liaw, B. R. J. Chem. Soc., Chem. Commun. 1990, 161–163.
13. Hwu, J. R.; Chen, B.-L.; Huang, L. W.; Yang, T. H. J. Chem. Soc., Chem. Commun. 1995, 299–300.
14. Hwu, J. R.; Chen, B.-L.; Lin, C.-F.; Murr, B. L. J. Organomet. Chem. 2003, 686, 198–201.
15. Lin, L. C.; Li, Y. C.; Lin, C. C.; Hwu, J. R. J. Chem. Soc., Chem. Commun. 1996, 509–510.
16. Lin, L. C.; Chueh, L. L.; Tsay, S.-C.; Hwu, J. R. Tetrahedron Lett. 1995, 36, 4093–4096.
17. For a review and a book, see: (a) Stratakis, M.; Orfanopoulos, M. Tetrahedron 2000, 56, 1595–1615. (b) Griesbeck, A. G. In CRC Handbook of Organic Photochemistry and Photobiology; Horspool, W. M., Song, P.-S., Eds.; CRC Press: New York USA, 1995; Chapter 24.
18. Clennan, E. L. Tetrahedron 2000, 56, 9151–9179.
19. Fleming, I.; Perry, D. A. Tetrahedron 1981, 37, 4027–4034.
20. Otera, J.; Mandai, T.; Shiba, M.; Saito, T.; Shimohata, K.; Takemori, K.; Kawasaki, Y. Organometallics 1983, 2, 332–336.
21. Jung, M. E.; Piizzi, G. J. Org. Chem. 2002, 67, 3911–3914.
22. Jung, M. E.; Piizzi, G. J. Org. Chem. 2003, 68, 2572–2582.
23. Trost, B. M.; Ball, Z. T. J. Am. Chem. Soc. 2004, 126, 13942–13944.
24. Minami, I.; Takahashi, K.; Shimizu, I.; Kimura, T.; Tsuji, J. Tetrahedron 1986, 42, 2971–2977.
25. Baba, T.; Nakano, K.; Nishiyama, S.; Tsuruya, S.; Masai, M. J. Chem. Soc., Chem. Commun. 1989, 1697–1699.
26. Yoshida, J.; Nishiwaki, K. J. Chem. Soc., Dalton Trans. 1998, 2589–2596.
27. For related reports, see: (a) Giordan, J. C. J. Am. Chem. Soc. 1983, 105, 6544–6546. (b) Bock, H.; Kaim, W. J. Am. Chem. Soc. 1980, 102, 4429–4438. (c) Brown, R. S.; Eaton, D. F.; Hosomi, A.; Traylor T. G.; Wright J. M. J. Organomet. Chem. 1974, 66, 249–254. (d) Traylor, T. G.; Hanstein, W.; Berwin, H. J.; Clinton, N. A.; Brown, R. S. J. Am. Chem. Soc. 1971, 93, 5715–5725. (e) Hanstein, W.; Berwin, H. J.; Traylor, T. G. J. Am. Chem. Soc. 1970, 92, 829–836.
28. Yoshida, J.; Murata, T.; Isoe, S. Tetrahedron Lett. 1986, 27, 3373–3376.
29. Shul’pin, G. B.; Süss–Fink, G.; Lindsay–Smith, J. R. Tetrahedron 1999, 55, 5345–5358.
30. Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1969, 8, 556–577.
31. Doncaster, A. M.; Walsh, R. J. Chem. Soc., Faraday Trans. 1 1976, 72, 2908–2916.
32. Nickon, A.; Bagli, J. F. J. Am. Chem. Soc. 1961, 83, 1498–1508.
33. Gollnick, K.; Schenck, G. O. Pure Appl. Chem. 1964, 9, 507–525.
34. Foote, C. S.; Wexler, R.; Ando, W. Tetrahedron Lett. 1965, 46, 4111–4118.
35. Pola, J. In Carbon-Functional Organosilicon Compounds; Chvalovsky, V., Bellama, J. M., Eds.; Plenum: New York USA, 1984; Chapter 2, p 84.
36. Shuto, S.; Sugimoto, I.; Abe, H.; Matsuda, A. J. Am. Chem. Soc. 2000, 122, 1343–1351.
37. Abe, M.; Kawanami, S.; Ishihara, C.; Nojima, M. J. Org. Chem. 2004, 69, 5622–5626.
38. Hwu, J. R.; Robl, J. A.; Khoudary, K. P. J. Chromatogr. Sci. 1987, 25, 501–505.
39. Hudrlik, P. F.; Waugh, M. A.; Hudrlik, A. M. J. Organomet. Chem. 1984, 271, 69–76.
40. Flaugh, M. E.; Crowell, T. A. Farlow, D. S. J. Org. Chem. 1980, 45, 5399–5400.
41. Hwu, J. R.; Wetzel, J. M. J. Org. Chem. 1992, 57, 922–928.
42. Blay, G.; Cardona, L.; Collado, A. M.; Garcia, B.; Morcillo, V.; Pedro, J. R. J. Org. Chem. 2004, 69, 7294–7302.
Part II
References
1. Steele, V. E.; Holmes, C. A.; Hawk, E. T.; Kopelovich, L.; Lubet, R. A.; Crowell, J. A.; Sigman, C. C.; Kelloff, G. J. Expert Opin. Investig. Drugs 2000, 9, 2121–2138.
2. Lee, C.-H.; Jang, Y.-S.; Her, S.-J.; Moon, Y.-M.; Baek, S. J.; Eling, T. Exp. Cell. Res. 2003, 289, 335–341.
3. Gnabre, J. N.; Brady, J. N.; Clanton, D. J.; Ito, Y.; Dittmer, J.; Bates, R. B.; Huang, R. C. C. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 11239–11243.
4. Hwu, J. R.; Tseng, W. N.; Gnabre, J.; Giza, P.; Huang, R. C. C. J. Med. Chem. 1998, 41, 2994–3000.
5. Huang, R. C. C.; Li, Y.; Giza, P. E.; Gnabre, J. N.; Abd-Elazem, I. S.; King, K. Y.; Hwu, J. R. Antiviral Res. 2003, 58, 57–64.
6. Dohm, J. A.; Hsu, M.-H.; Hwu, J.-R.; Huang, R. C. C.; Moudrianakis, E. N.; Lattman, E. E.; Gittis, A. G. J. Mol. Biol. 2005, 349, 731–744.
7. Hwu, J. R.; Hsu, M.-H.; Huang, R. C. C. Bioorg. Med. Chem. Lett. 2008, 18, 1884–1888.
8. Chen, H.; Teng, L.; Li, J. N.; Park, R.; Mold, D. E.; Gnabre, J.; Hwu, J. R.; Tseng, W. N.; Huang, R. C. C. J. Med. Chem. 1998, 41, 3001–3007.
9. Park, R.; Giza, P. E.; Mold, D. E.; Huang, R. C. C. Antiviral Res. 2003, 58, 35–45.
10. Craigo, J.; Callahan, M.; Huang, R. C. C.; DeLucia, A. L. Antiviral Res. 2000, 47, 19–28.
11. Park, R.; Chang, C.-C.; Liang, Y.-C.; Chung, Y.; Henry, R. A.; Lin, E.; Mold, D. E.; Huang, R. C. C. Clin. Cancer Res. 2005, 11, 4601–4609.
12. Heller, J. D.; Kuo, J.; Wu, T. C.; Kast, W. M.; Huang, R. C. C. Cancer Res. 2001, 61, 5499–5504.
13. Chang, C.-C.; Heller, J. D.; Kuo, J.; Huang, R. C. C. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 13239–13244.
14. Chang, C.-C.; Liang, Y.-C.; Klutz, A.; Hsu, C.-I.; Lin, C.-F.; Mold, D. E.; Chou, T.-C.; Lee, Y. C.; Huang, R. C. C. Cancer Chemother. Pharmacol. 2006, 58, 640–653.
15. Witczak, Z. J. In Carbohydrate Drug Design; Klyosov, A. A., Witczak, Z. J., Platt, D., Eds.; American Chemical Society: Washington, D. C., 2006; Chapter 2, p 32.
16. Cheng, H.; Cao, X.; Xian, M.; Fang, L.; Cai, T. B.; Ji, J. J.; Tunac, J. B.; Sun, D.; Wang, P. G. J. Med. Chem. 2005, 48, 645–652.
17. Mühlhausen, U.; Schirrmacher, R.; Piel, M.; Lecher, B.; Briegert, M.; Piee-Staffa, A.; Kaina, B.; Rösch, F. J. Med. Chem. 2006, 49, 263–272.
18. Liu, D.-Z.; Sinchaikul, S.; Reddy, P. V. G.; Chang, M.-Y.; Chen, S.-T. Bioorg. Med. Chem. Lett. 2007, 17, 617–620.
19. Quan, J.; Chen, Z.; Han, C.; Lin, X. Bioorg. Med. Chem. 2007, 15, 1741–1748.
20. Tietze, L.; Feuerstein, T.; Fecher, A.; Haunert, F.; Panknin, O.; Borchers, U.; Schuberth, I.; Alves, F. Angew. Chem., Int. Ed. 2002, 41, 759–761.
21. Reinhard, J.; Hull, W. E.; von der Lieth, C. W.; Eichhorn, U.; Kliem, H. C.; Kaina, B.; Wiessler, M. J. Med. Chem. 2001, 44, 4050–4061.
22. Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057–3064.
23. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599.
24. Malkoch, M.; Schleicher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin, V. V. Macromolecules 2005, 38, 3663–3678.
25. Dahmén, J.; Frejd, T.; Grönberg, G.; Lave, T.; Magnusson, G.; Noori, G. Carbohydr. Res. 1983, 116, 303–307.
26. Dubber, M.; Lindhorst, T. K. J. Org. Chem. 2000, 65, 5275–5281.
27. Gao, Y.; Eguchi, A.; Kakehi, K.; Lee, Y. C. Bioorg. Med. Chem. 2005, 13, 6151–6157.
28. Mosmann, T. J. Immunol. Methods 1983, 65, 55–63.
29. Stockert, R. J. Physiol. Rev. 1995, 75, 591–609.
30. Gould, G. W.; Holman, G. D. Biochem. J. 1993, 295, 329–341.
31. Lu, X.; Bittman, R. J. Org. Chem. 2005, 70, 4746–4750.
32. Wu, X.; Ling, C.-C.; Bundle, D. R. Org. Lett. 2004, 6, 4407–4410.
33. Malkoch, M.; Schleiher, K.; Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin, V. V. Macromolecules 2005, 38, 3663–3678.
34. McKelvy, J. F.; Lee, Y. C. Arch Biochem Biophys 1969, 132, 99–110.
35. Davis, B. G.; Maughan, M. A. T.; Green, M. P.; Ullman, A.; Jones, J. B. Tetrahedron: Asymmetry 2000, 11, 245–262.
36. Jung, M. E.; Yang, E. C.; Vu, B. T.; Kiankarimi, M.; Spyrou, E.; Kaunitz, J. J. Med. Chem. 1999, 42, 3899–3909.
37. Dubber, M.; Lindhorst, T. K. J. Org. Chem. 2000, 65, 5275–5281.
38. Fazio, F.; Bryan, M. C.; Blixt, O.; Paulson, J. C.; Wong, C. H. J. Am. Chem. Soc. 2002, 124, 14397–14402.
39. Michalik, D.; Vliegenthart, J. F. G.; Kamerling, J. P. J. Chem. Soc., Perkin Trans. 1 2002, 1973–1981.
40. Liu, M.-Z.; Fan, H.-N.; Lee, Y. C. Biochimie 2001, 83, 693–698.
41. Adams, S.; Robbins, F.-M.; Chen, D.; Wagage, D.; Holbeck, S.; Morse, H.; Stroncek, D.; Marincola, F. J. Transl. Med. 2005, 3, 11.
Part III
References
1. For recent reviews, see: (a) Dahl, J. A.; Maddux, B. L. S.; Hutchison, J. E. Chem. Rev. 2007, 107, 2228–2269. (b) Rosi, N. L.; Mirkin, C. A. Chem. Rev. 2005, 105, 1547–1562. (c) Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; Mulvaney,P. Coord. Chem. Rev. 2005, 249, 1870–1901. (d) Gupta, A. K.; Gupta, M. Biomaterials 2005, 26, 3995–4021. (e) Daniel, M.-C.; Astruc, D. Chem. Rev. 2004, 104, 293–346.
2. Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Science 2006, 312, 1027–1030.
3. Trewyn, B. G.; Slowing, I. I.; Giri, S.; Chen, H.-T.; Lin, V. S. Y. Acc. Chem. Res. 2007, 40, 846–853.
4. Soloviev, M. J. Nanobiotechnology 2007, 5, 11.
5. Loftus, A. F.; Reighard, K. P.; Kapourales, S. A.; Leopold, M. C. J. Am. Chem. Soc. 2008, 130, 1649–1661.
6. Liu, Y.; Franzen, S. Bioconjugate Chem. 2008, 19, 1009–1016.
7. Ernst, A. Z.; Zoladek, S.; Wiaderek, K.; Cox, J. A.; Kolary-Zurowska, A.; Miecznikowski, K.; Kulesza, P. J. Electrochim. Acta 2008, 53, 3924–3931.
8. Gibson, J. D.; Khanal, B. P.; Zubarev, E. R. J. Am. Chem. Soc. 2007, 129, 11653–11661.
9. Pan, Q.; Zhang, R.; Bai, Y.; He, N.; Lu, Z. Anal. Biochem. 2008, 375, 179–186.
10. Hsu, M.-H.; Josephrajan, T.; Yeh, C.-S.; Shieh, D.-B.; Su, W.-C.; Hwu, J. R. Bioconjugate Chem. 2007, 18, 1709–1712.
11. Ge, Z.; Kang, Y.; Taton, T. A.; Braun, P. V.; Cahill, D. G. Nano Lett. 2005, 5, 531–535.
12. Mondalek, F.; Zhang, Y.; Kropp, B.; Kopke, R.; Ge, X.; Jackson, R.; Dormer, K. J. Nanobiotechnology 2006, 4, 4.
13. Shieh, D.-B.; Cheng, F.-Y.; Su, C.-H.; Yeh, C.-S.; Wu, M.-T.; Wu, Y.-N.; Tsai, C.-Y.; Wu, C.-L.; Chen, D.-H.; Chou, C.-H. Biomaterials 2005, 26, 7183–7191.
14. Advances in DNA Sequence Specific Agents; Hurley, L. H., Ed.; JAI: London, 1992; Vol. 1, pp 247–261.
15. Advances in DNA Sequence Specific Agents; Jones G.B., P. M., Ed.; JAI: London, 1998; Vol. 3, pp 157–199.
16. Schärer, O. D. Chem. Bio. Chem. 2005, 6, 27–32.
17. Ellis, D. A.; Wolkenberg, S. E.; Boger, D. L. J. Am. Chem. Soc. 2001, 123, 9299–9306.
18. Burger, R. M. Chem. Rev. 1998, 98, 1153–1170.
19. Skibo, E. B.; Xing, C.; Dorr, R. T. J. Med. Chem. 2001, 44, 3545–3562.
20. Ali, H.; van Lier, J. E. Chem. Rev. 1999, 99, 2379–2450.
21. WHO Task Group on Environmental Health Criteria for Formaldehyde. Environmental Health Criteria 89, Formaldehyde; World Health Organization: Geneva, 1989.
22. Feldman, M. Y.; Davidson, J. N.; Waldo, E. C. In Progress in Nucleic Acid Research and Molecular Biology; Academic Press, 1973; Vol. 13, pp 1–49.
23. Huang, H.; Solomon, M. S.; Hopkins, P. B. J. Am. Chem. Soc. 1992, 114, 9240–9241.
24. Huang, H.; Hopkins, P. B. J. Am. Chem. Soc. 1993, 115, 9402–9408.
25. Deguest, G.; Bischoff, L.; Fruit, C.; Marsais, F. Org. Lett. 2007, 9, 1165–1167.
26. Kacprzak, K. Synth. Commun. 2003, 33, 1499–1507.
27. Hong S.-C. PhD Thesis, National Tsing Hus University, 2006.
28. Cech, T. R. Biochemistry 1981, 20, 1431–1437.
29. Tepe, J. J.; Williams, R. M. J. Am. Chem. Soc. 1999, 121, 2951–2955.
30. Nash, T. Biochem. J. 1953, 55, 416–421.
31. Summers, W. R. Anal. Chem. 1990, 62, 1397–1402.