簡易檢索 / 詳目顯示

研究生: 黃柏彰
Huang, Bo-Jhung
論文名稱: 藍寶石基板氮化鎵之準垂直型蕭基以及接面位障蕭基二極體製作
The Fabrication of Quasi Vertical Schottky Diode and Junction Barrier Schottky Diode GaN on Sapphire
指導教授: 黃智方
口試委員: 龔正
李坤彥
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 61
中文關鍵詞: 氮化鎵功率元件蕭基二極體
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 篇論文中,我們使用兩種不同的磊晶結構的氮化鎵試片製作了準垂直型 SBD、JBS和PiN二極體。傳統的SBD二極體元件操作在反向偏壓時,存在漏電流過大而導致元件提早崩潰的問題,所以我們設計製作了不同寬度的JBS元件,嘗試降低元件操作在逆偏時所產生的漏電流。且我們在兩種不同磊晶結構的氮化鎵試片上,用了不同的製程去製作SBD元件,比較兩種製程的電性差異。
    從I-V量測結果來看,JBS元件確實可以稍微降低元件的反向漏電流,而蕭基接面在製程上有經過電漿的轟擊,其漏電流明顯地上升。然而蕭基接面沒經過任何損傷破壞的SBD和PiN元件有比較好的電性表現,其崩潰電壓分別為590V和380V,而以PiN元件有較高的current on/off ratios。
    從C-V量測結果來看,試片的N-層濃度不如預期的高,可能與N-層中的缺陷密度有相當大的關係,以至於我們的SBD特徵導通電阻偏大,順向導通特性不如預期。


    目錄 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 序論 1 1.1 前言 1 1.2 研究動機與文獻回顧 3 1.3 研究方向簡介與論文架構 8 1.3.1研究方向簡介 8 1.3.2論文架構 8 第二章 材料介紹與實驗設計 9 2.1 氮化鎵材料介紹及基板選擇 9 2.2 蕭基二極體原理 11 2.3 接面位障蕭基二極體原理 14 2.4 元件設計 15 2.4.1氮化鎵磊晶介紹 15 2.4.2元件Layout設計介紹 17 2.5 元件模擬 19 第三章 光罩設計與元件製程 21 3.1 準垂直型蕭基和接面蕭基二極體元件設計流程 21 3.1.1準垂直型蕭基二極體元件 21 3.1.2準垂直型接面蕭基二極體元件 22 3.2 p-GaN蝕刻及對準記號(Mask1) 22 3.3 深蝕刻阻擋層及深蝕刻 (Mask2) 24 3.3.1深蝕刻阻擋層 24 3.3.2深蝕刻 26 3.4 N型蕭基接觸(Mask3) 28 3.5 N型歐姆接觸(Mask4) 29 第四章 量測結果分析 32 4.1 正向電性分析 32 4.1.1元件N型歐姆接觸分析 32 4.1.2元件正向偏壓特性 34 4.2 元件反向偏壓特性 37 4.3 C-V電性分析 44 4.3.1常溫元件C-V量測 44 4.3.2.升溫元件C-V量測 47 4.4 C-t電性分析 52 第五章 結論與未來工作 58 參考文獻 59

    [1] B. J. Baliga, “Power semiconductor device figure of merit for high-frequency applications, ”IEEE Electron Device Lett, vol. 10,
    no.10 , pp. 455-457, 1989.
    [2] M. N. Yoder, “Wide bandgap semiconductor materials and devices, ”IEEE Trans. Electron Devices, vol. 43, no. 10, pp. 1633–1636,Oct. 1996.
    [3] T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M.M. Wong, U. Chowdhury, H. K. Kwon, R.D. Dupuis, “High-voltage mesa-structure GaN Schottky rectifiers processed by dry and wet etching, ” Appl Phys Lett., vol. 77, no. 18, pp.2918,2000.
    [4] J. W. Johnson, J. R. LaRoch, F. Ren, B. P. Gila, M. E. Overberg, C. R. Abernathy, J. -I. Chyi, C. C. Chuo, T. E. Nee, C. M. Lee, K. P. Lee, S. S. Park, Y.J. Park and S. J. Pearton, “Schottky rectifiers fabricated on free-standing GaN substrates”, Solid-State Electronics, vol. 45,pp. 405-410, 2001.
    [5] J. W. Johnson, A. P. Zhang, W.-B. Luo, F. Ren, S. J. Pearton, S. S. Park, Y. J. Park, “Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers, ” IEEE Trans. Electron Devices, vol. 49, no. 1, pp. 32-36, Jan 2002.
    [6] J. B. Limb, D. Yoo, J.-H. Ryou, W. Lee, S.-C. Shen, and R. D. Dupuis, "High performance GaN pin rectifiers grown on free-standing GaN substrates," Electronic Lett., vol. 42, no. 22, Oct. 2006.
    [7] Y. Yoshizumi, S. Hashimoto, T. Tanabe, and M. Kiyama, “High-breakdown-voltage pn-junction diodes on GaN substrates, ” Journal of Crystal Growth, vol. 298, pp. 875-878, Jan. 2007.
    [8] Y. Saitoh, K. Sumiyoshi, M. Okad, T. Horii, T. Miyazaki, H. Shiomi,.M. Ueno, K. Katayama, M. Kiyama, T. Nakamura, “Extremely low on-resistance and high breakdown voltage observed in vertical GaN Schottky barrier diodes with high-mobility drift layers on low-dislocation-density GaN substrates, ” Applied Physics Express vol. 3, pp. 081001 1-3, Jul. 2010.
    [9] B.J. Baliga, “The pinch rectifier: A low-forward-drop high speed power diode, ” IEEE Electron Device Lett., vol. EDL-5, no. 6, pp.194-196, 1984.
    [10] C.M. Zetterling, F. Dahlquist, N.Lundberg, M.Ostling, K. Rottner, and L.Ramberg, “Junction barrier Schottky diodes in 6H-SiC, ” Solid State Electron., vol. 42, no. 9, pp. 1757-1759, 1998.
    [11] W. Utsumi, H. Saitoh, H. Kaneko, T. Watanuki, K. Aoki, O. Shimomura, “Congruent melting of gallium nitride at 6 GPa an its application to single crystal growth, ” Nature Materials, vol. 2 ,pp. 735,2003.
    [12] http://www.kymatech.com/.
    [13] http://www.goldeneyeled.com/index.html.
    [14] A.C. Schmitz, A.T. Ping, M.A. Khan, Q. Chen, J.W. Yang and I. Adesida, “Schottky barrier properties of various metals on n-type GaN, ” Semicond. Sci. Technol.vol. 11,, pp.1464-1467,1996.
    [15] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High Output Power InGaN Ultraviolet Light-Emitting Diodes Fabricated on Patterned Substrates Using Metalorganic Vapor Phase Epitaxy, ” Jpn. J. Appl. Phys., Part 2 vol. 40, pp. L583-L585, 2001.
    [16] W. Götz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of acceptors in Mgdoped GaN grown by metalorganic chemical vapor deposition, ” Appl. Phys. Lett., vol. 68, no. 5, pp. 667-669, Jan. 1996.
    [17] J.-M. Lee, K.-M. Chang, I.-H. Lee, and S.-J. Parkz, “Cl2-based dry etching of GaN and InGaN using inductively coupled plasma, ” J. Electrochemical Society, vol. 147, no. 5, pp. 1859-1863, 2000.
    [18] J. Ladroue, A. Meritan, M. Boufnichel, P. Lefaucheux, and P. Ranson, “Deep GaN etching by inductively coupled plasma and induced surface defects, ”J. Vac. Sci. Technol. A vol. 18, pp. 1226-1232, Oct. 2010.
    [19] B. J. Zhang, J. K. Sheu, S. W. Lin, “Schottky barrier heights of metal contacts to n-type gallium nitride with low-temperature-grown cap layer, ” Appl. Phys. Lett.vol. 88, 032103,2006.
    [20] B. J. Zhang, T. Egawa, G. Y. Zhao, H. Ishikawa, and M. Umeno, “Schottky diodes of Ni/Au on n-GaN grown on sapphire and SiC substrates, ”Appl. Phys. Lett. vol. 79, no. 16, pp. 2567-2569,2001.
    [21] Susumu Oyama, Tamotsu Hashizume and Hideki Hasegawa , “Mechanism of Current Leakage through Metal/n-GaN Interfaces, ”Applied Surface Science.vol. 190, pp.322-325,2002.
    [22] L. S. Yu, Q. Z. Liu, Q. J. Xing, D. J. Qiao, S. S. Lau, and J. Redwing, “The roleof the tunneling component in the current–voltage characteristics of metal-GaNSchottky diodes”, J. Appl. Phys. vol.84,no. 4, 2099, 1998.
    [23] M. Zerbst, “Relaxation Effects at Semiconductor-Insulator Interfaces, ” Z. Angew . Phys. vol. 22, pp. 30–33, May 1966.
    [24] D.K. Schroder, “Semiconductor Material and Device
    Characterization, ” John Wiley & Sons Inc, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE