研究生: |
羅俊麟 Lo, Chun-Lin |
---|---|
論文名稱: |
A Baseband Transceiver for In-Vehicle Power Line Communications 適用於車用電力線通訊基頻收發機設計 |
指導教授: |
馬席彬
Ma, Hsi-Pin |
口試委員: |
吳仁銘
蔡佩芸 楊家驤 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 電力線通訊 、基頻收發機 、快速傅立葉轉換 、正交分頻多工 |
外文關鍵詞: | Power Line Communications, Baseband Transceiver, FFT, OFDM |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來車子內部的電子控制單位(ECU, electronic control unit)逐漸增加,而這
些控制單位間的資料傳遞都需要額外的特定拉線。車用電力線通訊的概念即是利
用車子內部電力線做為資料傳輸的媒介,進而降低特定拉線所需的花費或者是對
汽車所造成的重量。
在本篇論文中,基於相關文獻的研究與探討,提出了更為符合汽車內部真實
情況的車用電力線通道模型,並針對該通道模型設計出一個適用於車用電力線通
訊的基頻收發機。整個收發機的設計是依照標準設計流程,從相關文獻的研讀、
系統規格的設計、功能性的模擬和系統演算法的決定,到整個系統的邏輯電路設
計。
在發送機的部分,針對同步設計了相對應的訓練序列(preamble);在接收機
的部分則包含:降低車用電力線通道中的衝擊性噪音(impulsive noise)效果的非線
性消隱工藝(nonlinear blanking process)、封包偵測(packet detection)、時間同步
(timing synchronization)、採樣頻率偏移追蹤(sampling clock offset tracking loop)、
通道估計/等化(channel estimation/equalization)和快速傅立葉轉換(FFT)。整個系統
在多路徑汽車電力線的環境下,錯誤率可以達到10^-3 而訊雜比為65 dB。
在邏輯電路設計上,是以低複雜度為主要的考量。電路是採用暫存器交換層
級語言(RTL)描述並作驗證 ,再利用tsmc 0.18 微米1p6m 的技術來合成邏輯電
路。經由NAND 閘的面積估計,所設計電路約有513k 的gate count 大小。
In-vehicle power line communications (PLC) provide a solution for high data communications
in the automotive networks without increasing volume, weight and cost of the wiring
harnesses. This thesis presents the vehicle power line channel model, which contains multipath
fading, impulsive noise, background white noise, and sampling clock offset (SCO) impairments.
Also, we propose the design of baseband inner transceiver, which is specifically
aimed at the built channel model. The proposed design employs the bandwidth (BW) from
1:8 to 50 MHz and supports BPSK-QAM1024 modulation scheme with maximum data rate
212:83 Mbps. In the transmitter part, the corresponding preamble structure is designed. In
the receiver part, it contains packet detection, symbol timing synchronization, sampling clock
offset synchronization, channel estimation/equalization, and the nonlinear blanking process
for reducing the power of impulsive noise. Functional simulations show the validity of these
algorithms and system performance of the proposed transceiver. Under the impulsive noise
scenario, the simulation result shows the requirement of SINR (Signal to Interference and
Noise Ratio) 72 dB for bit error rate (BER) of 10−3. The ability of impulsive noise resistance,
which is provided by the simple non-linear blanking process and large FFT size, under low
SINR ( < 64 dB) condition is also shown in the simulation result. The comparison with other
works is also obtained.
The architecture and logic design of proposed receiver are also presented. To simplified
the critical component of whole receiver, a radix-2/4/8/16 single-path delay feedback (SDF)
fast fourier transform (FFT) architecture is adopted. It requires only two complex multipliers,
and all the trivial multiplications are further simplified by shifting and addition. The cubic
interpolator is implemented by Farrow structure to reduce the cost of multiplier. The other
components, such as delay correlator, SCO estimator, loop filter, cubic controller and division free hard-demapper, are also designed and presented. Eventually, the functionality of
proposed logic design are verified by the test and golden patterns generated form fix-pointed
Matlab model NC-Verilog RTL simulation.
[1] M. Yousuf and M. El Shafei, “Power Line Communications: An Overview - Part I,” in
Proc. IEEE IIT ’07, Nov. 2007, pp. 218 –222.
[2] M. Yousuf, S. Rizvi, and M. El Shafei, “Power Line Communications: An Overview -
Part II,” in Proc. IEEE ICTTA’08, Apr. 2008, pp. 1 –6.
[3] H. Ferreira, H. Grove, O. Hooijen, and A. Han Vinck, “Power Line Communications:
An Overview,” in Proc. IEEE AFRICON’96, vol. 2, Sep. 1996, pp. 558 –563.
[4] F. Nouvel and P. Tanguy, “What Is About Future High Speed Power Line Communication
Systems for In-Vehicles Networks?” in Proc. IEEE ICICS’09, Dec. 2009, pp. 1
–6.
[5] Official Website of Yamar. Yamar Electronics, LTD. , [Online]. Available:
http://www.yamar.com/.
[6] Data Base of In-Vehicle Power Line Channel Measurement from In-Vehicle
Power Line Communication Project at The UBC , [Online]. Available:
http://www.ece.ubc.ca/lampe/VehiclePLC.htmL.
[7] M. Mohammadi, L. Lampe, M. Lok, S. Mirabbasi, M. Mirvakili, R. Rosales, and
P. Van Veen, “Measurement Study and Transmission for In-Vehicle Power Line Communication,”
in Proc. IEEE ISPLC’09, Apr. 2009, pp. 73 –78.
[8] V. Degardin, M. Lienard, P. Degauque, E. Simon, and P. Laly, “Impulsive Noise Characterization
of In-Vehicle Power Line,” IEEE Trans. on Electromagnetic Compatibility,,
vol. 50, no. 4, pp. 861 –868, Nov. 2008.
[9] M. Lienard, M. Carrion, V. Degardin, and P. Degauque, “Modeling and Analysis of In-
Vehicle Power Line Communication Channels,” IEEE Trans. on Vehicular Technology,
vol. 57, no. 2, pp. 670 –679, Mar. 2008.
[10] F. Nouvel, G. Zein, and J. Citerne, “Code Division Multiple Access for An Automotive
Area Network over Power-Lines,” in Proc. IEEE VTC’94, Jun. 1994, pp. 525 –529 vol.1.
[11] H. Beikirch and M. Voss, “Can-Transceiver for Field Bus Powerline Communications,”
in Proc. IEEE ISPLC’00, 2000, pp. 257 –264.
[12] J. Taub, H. Beikirch, and M. Voss, “Real-Time Capabilities with Digital Powerline Communications
Interfaces in CSMA/CA-Networks,” in Proc. IEEE RTN’04, 2004.
[13] W. Gouret, F. Nouvel, and G. E. Zein, “Additional Network Using Automotive Powerline
Communication,” in Proc. IEEE ITST’06, Jun. 2006, pp. 1087 –1089.
[14] W. Gouret, F. Nouvel, and G. El Zein, “Powerline Communication on Automotive Network,”
in Proc. IEEE VTC’07, Apr. 2007, pp. 2545 –2549.
[15] P. Tanguy, F. Nouvel, and P. Maziearo, “Power Line Communication Standards for In-
Vehicule Networks,” in Proc. IEEE ITST’09, Oct. 2009, pp. 533 –537.
[16] W. Gouret, F. Nouvel, and G. El Zein, “High Data Rate Network Using Automotive
Powerline Communication,” in Proc. IEEE ITST ’07, Jun. 2007, pp. 1 –4.
[17] V. Degardin, M. Lienard, P. Degauque, and P. Laly, “Performances of The HomePlug
PHY Layer in The Context of In-vehicle Powerline Communications,” in Proc. IEEE
ISPLC ’07, Mar. 2007, pp. 93 –97.
[18] T. Huck, J. Schirmer, T. Hogenmuller, and K. Dostert, “Tutorial about The Implementation
of A Vehicular High Speed Communication System,” in Power Line Communications
and Its Applications, Apr. 2005, pp. 162 – 166.
[19] “IEEE Standard for Broadband over Power Line Networks: Medium Access Control and
Physical Layer Specifications,” IEEE Standard 1901, 2010.
[20] T. Keller and L. Hanzo, “Orthogonal Frequency Division Multiplex Synchronisation
Techniques for Wireless Local Area Networks,” in Proc. IEEE PIMRC’96, vol. 3, Oct.
1996, pp. 963 –967.
[21] S. Y. Liu and J. W. Chong, “A Study of Joint Tracking Algorithms of Carrier Frequency
Offset and Sampling Clock Offset for OFDM-Based WLANs,” in IEEE International
Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 1,
Jun. 2002, pp. 109 – 113.
[22] F. Gardner, “Interpolation in Digital Modems. I. Fundamentals,” IEEE Trans. on Communications,
vol. 41, no. 3, pp. 501 –507, Mar. 1993.
[23] L. Erup, F. Gardner, and R. Harris, “Interpolation in Digital modems. II. Implementation
and Performance ,” IEEE Trans. on Communications, vol. 41, no. 6, pp. 998 –1008, Jun.
1993.
[24] W. Li and L. Wanhammar, “A Pipeline FFT Processor,” in Proc. IEEE Workshop Signal
Processing Systems Design and Implementation, 1999, pp. 654 –662.
[25] T. D. Chiueh and P. Y. Tsai, OFDM Baseband Receiver Design for Wireless Communications.
John Wiley and Sons (Asia), 2007.
[26] Y. Lin, P. Y. Tsai, and T. D. Chiueh, “Low-Power Variable-Length Fast Fourier Transform
Processor,” IEE Proc. Comput. Digit. Tech., vol. 152, no. 4, pp. 499 – 506, Jul.
2005.
[27] P. Y. Tsai, H. Y. Kang, and T. D. Chiueh, “Joint Weighted Least-Squares Estimation of
Carrier-Frequency Offset and Timing Offset for OFDM Systems over Multipath Fading
Channels,” IEEE Trans. Veh. Technol., vol. 54, no. 1, pp. 211 – 223, Jan. 2005.