研究生: |
黃玠維 Chieh-Wei Huang |
---|---|
論文名稱: |
分佈式布拉格反射器光參數振盪於週期性反轉鈮酸鋰光波導之進展 Toward Distributed Bragg Reflector (DBR) Optical Parametric Oscillation (OPO) in APE PPLN Waveguides |
指導教授: |
黃衍介
Yen-Chieh Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 布拉格反射器 、光參數振盪 、鈮酸鋰 、光波導 |
外文關鍵詞: | Distributed Bragg reflector (DBR), Optical parametric oscillation (OPO), LiNbO3, Annealed proton exchange (APE) waveguide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗中,我們設計了一波長可調變之光源。利用此波長可調變光源,我們在高電壓週期性反轉鈮酸鋰回火式質子交換光波導中,達成了光參數訊號的產生。在本實驗中,此自製光源之波長調變範圍從772奈米到777奈米,並在尚未耦合進光波導之前,擁有接近112瓦特穩定的峰值功率,以及8.9奈秒的脈衝寬度。在實驗結果方面,我們掃出了不同的光源波長所對應到之訊號調變曲線圖,由圖中顯示出光參數產生擁有極寬廣的波長調變範圍,訊號以及閒置訊號的波長調變範圍從1350奈米到1800奈米,並觀察到衰退波長位於1553奈米。此外,我們也利用在光波導的兩端接上光纖布拉格光柵的方式,形成一分佈式布拉格反射器,以實現光參數震盪的產生。此光纖光柵是利用紫外光曝照相位光罩的技術寫成,紫外光的波長位於244奈米,照度為150毫瓦每平方公分。經由紫外光曝照後,光纖光柵擁有高達百分之99的反射率從1500奈米一直到1551.2奈米,並於1550.8奈米之間擁有百分之99.9之反射率最大值。最後,在本論文中,我們也計算出光參數振盪對於不同反射率之分佈式布拉格反射器的臨界值,並且發現本實驗中所用之光纖分佈式布拉格反射器,於單一波長共振條件下所對應的臨界值為4.013瓦特(峰值功率)。
In this experiment, we designed a wavelength tunable pulse pump source and demonstrated the optical parametric generation (OPG) in annealed-proton-exchanged (APE) periodically poled lithium niobate (PPLN) waveguides. The pump source is tunable. With a tuning range started from 772 nm to 777 nm and has a stable peak power of nearly 112 W with pulse width 8.9 ns before it was coupled into the waveguide. The results showed a wide tuning range of OPG signal and idler from 1350 nm to 1800 nm, and a degeneracy wavelength was located at 1553 nm. Further more, we attached a fiber Bragg grating on both end face of the waveguide to process the distributed Bragg reflector (DBR) optical parametric oscillation (OPO). The fiber grating was fabricated by ultraviolet writing with phase mask technology. The UV wavelength was 244 nm with an intensity of 150 (mW/cm2). After UV exposure, the fiber Bragg grating has reflection higher than 99% between 1550 nm to 1551.2 nm, and the reflectivity reached the maximum value (99.9%) at 1550.8 nm. In the thesis, we also calculated the OPO threshold versus different DBR reflectivity in singly resonant oscillation (SRO) condition. Finally, we found the SRO threshold is around 4.013 watt (peak power) in this experiment.
[1] Ming-Hsien Chou, “Optical Frequency Mixers Using Three-Wave Mixing for Optical Fiber Communication,” Ph.D. Dissertation, Department of Applied Physics, Stanford University, Stanford, CA, 1999.
[2] L. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B., Vol. 12, No. 11, Nov. 1995.
[3] Krishnan R. Parameswaran, Roger K. Route, Jonathan R. Kurz, Rostislav V. Roussev, and Martin M. Fejer, “Highly efficiency second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate,” Opt. Lett., Vol. 27, No. 3, 2002.
[4] M. A. Arbore and M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett., Vol. 22, No. 3, Feb. 1997.
[5] C. P. Hussell and R. V. Ramaswamy, “High reflectance DBR gratings in LiNbO3 channel waveguides for WDM applications,” LEOS Meeting, San Francisco, CA, paper I07.2, Oct. 30, 1995.
[6] Ch. Becker, A. Greiner, Th. Oesselke, A. pape, W. Sohler, and H. Suche, “Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating,” Opt. Lett., Vol. 23, No. 15, pp. 1194-1196, Aug. 1998.
[7] S. Shinada, T. Kawanishi, T. Sakamoto, and M. Izutsu, “An optical grating filter dry-etched on a LiNbO3 substrate,” Electron. Express, Vol. 3, No. 14, July 2006.
[8] S. Mailis, C. Riziotis, I. T. Wellington, P.G.R. Smith, C.B.E. Gawith, and R.W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett., Vol. 28, No. 16, Aug. 2003.
[9] B. Wu, P. L. Chu, H. Hu, and Z. Xiong, “UV-induced surface-relief gratings on LiNbO3 channel waveguides,” IEEE J. Quantum Electron., Vol. 35, No. 10, Oct. 1999.
[10] Y. C. Huang, “Principles of Nonlinear Optics,” Course reader, National Tsing-Hua University, Taiwan, 2004.
[11] Wong, K.K., “Properties of Lithium Niobate,” Emis Datareviews Series, 28, Institution of Engineering and Technology, 2002.
[12] Robert W. Boyd, “Nonlinear Optics,” second edition.
[13] C. P. Hussell, “High index overlay for high reflectance DBR gratings in LiNbO3 channel waveguides,” IEEE Photonics Technology Lett., Vol. 9, No. 5, 1997.
[14] Shang-Da Yang, “A study of distributed Bragg reflector on LiNbO3 waveguide,” Master Thesis, Institute of Photonics and Optoelectronics, National Taiwan University, 1999.
[15] H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Lasers,” J. Appl. Phys., Vol. 43, Iss. 5, May 1972.
[16] Ryoung-Han Kim, “Design and Fabrication of Highly Efficient Electrooptic Modulators Using Bragg Grating Reflectors,” Ph.D. Dissertation, Department of Electrical Engineering, Texas A&M University, December 2005.
[17] G. P. Bava, I. Montrosset, W. Sohler, and H. Suche, “Numerical Modeling of Ti:LiNbO3 Integrated Optical Parametric Oscillators,” IEEE J. Quantum Electron., Vol. QE-23, No. 1, 1987.
[18] C. Yang and Y. Lai, “Apodised Fiber Bragg Gratings Fabricated with an Uniform Phase Mask Using Gaussian Beam Laser,” Opt. and Laser Tech. Vol. 32, 2000.
[19] S. Mailis, G.W. Ross, L. Reekie, J. A. Abernethy and R.W. Eason, “Fabrication of surface relief gratings on lithium niobate by combined UV laser and wet etching,” Electron. Lett., Vol. 36, No. 21, Oct. 2000.
[20] M. L. Bortz, L. A. Eyres, and M. M. Fejer, “Depth profiling of the d33 Nonlinear Coefficient in Annealed Proton Exchanged LiNbO3 Waveguides”, Appl. Phys. Lett. Vol. 62, No. 17, 1993.
[21] D. S. Starodubov, E. M. Dianov, S. A. Vasiliev, A. A. Frolov, O. I. Medvedkov, A. O. Rybaltovskii, V. A. Titova, “Hydrogen enhancement of near-UV photosensitivity of germanosilicate glass,” Proc. Soc. Photo Opt. Inst. Eng. (SPIE), Vol. 2998, 1997.
[22] R. Regener and W. Sohler, “Loss in Low-Finese Ti:LiNbO3 Optical Waveguide Resonators,” Appl. Phys. B36, 1985.