簡易檢索 / 詳目顯示

研究生: 徐彬偉
Hsu, Bin-Wei
論文名稱: EEG量測視覺疲勞及心智負荷之可用性評估
The applicability of EEG in measuring visual fatigue and mental workload
指導教授: 王茂駿
Wang, Mao-Jiun J .
口試委員: 王明揚
Wang, Eric Min-yang
黃雪玲
Hwang, Sheue-Ling
紀佳芬
Chi, Chia-Fen
石裕川
Shih, Yuh-Chuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 86
中文關鍵詞: 腦電波視覺疲勞心智負荷生理指標主觀指標
外文關鍵詞: EEG, visual fatigue, mental workload, physiological index, subjective rating
相關次數: 點閱:176下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦電波圖(Electroencephalography, EEG)在臨床上常用來量測人類各種認知及行為反應。本研究希望透過實驗來了解EEG頻域功率及平均振幅指標,和視覺疲勞及心智負荷間的關係,進而探討EEG指標在量測視覺疲勞及心智負荷的可用性。本研究共分為兩階段實驗進行,第一階段實驗,是透過比較EEG頻域功率指標和常用的視覺疲勞指標--近點調節值(NPA)、閃光融合閾值(CFF)及主觀疲勞問卷間之關係,來了解EEG頻域功率指標在量測視覺疲勞的可用性。共20位男性受試者(平均20.4歲,SD=1.46)參與實驗,實驗作業為120分鐘之模擬賽車遊戲。結果顯示EEG頻域功率指標可有效反應視覺疲勞程度的變化,且其敏感度比主觀視覺疲勞指標更佳。其中EEG β 和α分別適用於短時間及長時間視覺疲勞的量測。整體而言,EEG β/α為第一階段實驗中最佳的視覺疲勞量測指標。
    第二階段實驗旨在評估EEG平均振幅指標用於量測操作多工作業時之心智負荷的可用性。共30 位男性受試者參與3段各10分鐘的模擬飛行(MATB)心智負荷實驗(有3個不同的心智負荷水準),受測者被要求維持穩定保持最佳操作正確性之策略。實驗中共量測10種EEG指標(分別從大腦枕葉部O1-O2及額葉部F4-C4取得α, β, θ, α/θ, 和θ/β 等平均振幅值做為指標),及12種心率變異(HRV)指標,並以NASA-TLX (Task Load index) 及RSME (Rating Scale on Mental Effort)等主觀問卷記錄主觀心智負荷的變化,進而以變異數分析及相關性分析評估EEG平均振幅指標對心智負荷水準變化之敏感度。研究結果顯示EEG θ, α/θ (F4-C4) 和HRV指標中的SDNN, VLF, LF, %HF, LF/HF等指標可有效反應心智負荷的變化,而EEG α/θ (F4-C4) 以及LF/HF為本研究中最敏感的心智負荷量測指標。其中LF/HF和本實驗中其他生理指標間有很高的關聯性,而EEG α/θ (F4-C4)則和本實驗中主觀心智負荷指標有十分顯著的關聯性。此外,本研究也發現操作策略的確會影響EEG α (F4-C4) 和HF等指標的量測敏感性。
    以上結果說明了EEG頻域功率及平均振幅指標可分別有效量測視覺疲勞及心智負荷,但使用上仍需注意實驗作業特性以及操作策略設定,這些條件將影響EEG指標使用的可靠性。上開結果可供未來使用EEG評估駕駛安全警示或航空器操作環境安全之參考。


    EEG is widely used in cognitive and behavioral research. This study evaluates the effectiveness of using the EEG power and mean amplitude indices to measure visual fatigue and mental workload. Two-stage experiments are included in this study. In the first experiment, three common visual fatigue measures, critical-flicker fusion (CFF), near-point accommodation (NPA) and subjective eye-fatigue rating (questionnaire) were used to compare with the EEG power index. The subjects were 20 men with a mean age of 20.4 years (SD=1.46). The experimental task was a 120 min car-racing video game. Results indicated that the EEG power indices were valid as a visual fatigue measure and the sensitivity was higher than the subjective measure. The EEG β and EEG α power indices were effective for measuring visual fatigue in short and long-duration tasks, respectively. The EEG β/α was the most effective power index for the visual fatigue measure in this experiment.
    The second experiment aimed to identify EEG mean amplitude indices that can accurately monitor mental workload while subjects performed multiple tasks with the strategy of maintaining stable performance and maximizing accuracy. 30 male subjects completed three 10 min multitasks with 3 workload levels. 25 mental workload measures including 10 EEG mean amplitude indices (α, β, θ, α/θ, θ/β from O1-O2 and F4-C4), heart rate, 12 heart rate variability (HRV) indices, and 2 subjective measures data were collected. One-way ANOVA with repeated measures, Pearson correlation and Duncan post-hoc test were employed to observe index sensitivity. The results showed that EEG θ, α/θ (F4-C4), and SDNN, VLF, LF, %HF, LF/HF are sensitive to differentiated high workload levels. EEG α/θ (F4-C4) and LF/HF are most effective for monitoring high mental workload. EEG α/θ (F4-C4) showed strong correlations with subjective measures across different mental workload levels. Additionally, we found the operation strategy would affect the sensitivity of EEG α (F4-C4) and HF.
    These findings identified the EEG measure are valid in measuring visual fatigue and mental workload. Besides, the task characteristic and operation strategy might affect the validity of EEG indices. The results, furthermore, can be applied to enhance the safety, health, and comfort of the users involved in heavy visual requirement and mental workload tasks.
    Keywords: EEG, visual fatigue, mental workload, physiological index, subjective rating.

    摘要……………………………………………………………………………………………..I Abstract……………………………………………………….……………………………….II 誌謝辭…………………………………………………………………………………………III Table of Contents……………………………………………………………………… ……..IV Figure List……………………………………………………………………….……………VI Table List……………………………………………………………………………………..VII Chapter 1 Introduction ………………………………………………………………………1 1.1 BACKGROUND 1 1.2 MOTIVATIONS 3 1.3 PURPOSES AND FRAMEWORK OF THIS STUDY 5 Chapter 2 Literature review 7 2.1 EEG 7 2.1.1 The measure of EEG 7 2.1.2 The application of EEG 10 2.2 VISUAL FATIGUE MEASURING 12 2.2.1 The cause of visual fatigue 12 2.2.2 Subjective visual fatigue measure 13 2.2.3 Physiological visual fatigue measure 13 2.2.4 Measuring visual fatigue by EEG 15 2.3 MENTAL WORKLOAD MEASURING 17 2.3.1 Concepts of mental workload 17 2.3.2 Subjective mental workload measure 18 2.3.3 Physiological mental workload measure 18 2.3.4 Measuring mental workload by EEG 20 2.3.5 Confounding effect on mental workload measuring 21 Chapter 3 Applicability of EEG power indices in visual fatigue measuring 23 3.1 METHODS 23 3.1.1 Subjects 23 3.1.2 Apparatus and measurements 23 3.1.3 Experimental procedure 25 3.1.4 Experimental design 26 3.2 RESULTS 28 3.2.1 Visual fatigue measuring by three conventional indices 28 3.2.2 Visual fatigue measuring by EEG power indices 32 3.2.3 Correlation analysis 36 3.3 SUMMARY 37 Chapter 4 Effective EEG indices for monitoring mental workload while performing multiple tasks 40 4.1 METHODS 40 4.1.1 Subjects 40 4.1.2 Apparatus and measurements 40 4.1.3 Experimental procedure 44 4.1.4 Data Collection 46 4.1.5 Experimental design 49 4.2 RESULTS 51 4.2.1 EEG indices in performing multi-tasking workload 56 4.2.2 ECG indices in performing multi-tasking workload 56 4.2.3 Subjective measures of workload in performing multi-tasking 57 4.2.4 Correlation analysis 58 4.3 SUMMARY 60 Chapter 5 Conclusion 64 5.1 DISCUSSION 64 5.2 LIMITATIONS AND FUTURE WORK 67 References ………………………………………………….……..………………………….70 Appendix I ………………………………………………….……..…………………………81 Appendix II ………………………………………………….……..………………………....82 Appendix III ………………………………………………….……..………………………...86

    1. Al-Kadi, M. I., Ibne Reaz, M. B., & Mohd Ali, M. A. (2013) Evolution of electroencephalogram signal analysis techniques during anesthesia. Sensors, 13(5), 6605-6635.
    2. AlZoubi, O., Calvo, R., & Stevens, R. (2009) Classification of EEG for Affect Recognition: An Adaptive Approach. In A. Nicholson & X. Li (Eds.), Advances in Artificial Intelligence. Heidelberg: Springer Berlin. Press. Pp. 52-61.
    3. Andreassi, J. L. (2007) Measurement of the EEG. In J. L. Andreassi (Ed.), Psychophysiology: Human behavior and physiological response. New Jersey: Hillsdale. Pp. 59-69.
    4. Battiste, V., and Bortolussi, M. (1988) Transport pilot workload—A comparison between two subjective techniques. Proceedings of the Human Factors and Ergonomics Society 32nd Annual Meeting, Santa Monica, CA. October 24-28. Pp. 150-154.
    5. Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman P., Kaufmann P. G., Malik M., et al. (1997) Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34, 623-648.
    6. Borghini, G., Aricò, P., Astolfi, L., Toppi, J., Cincotti, F., Mattia, D., et al. (2013) Frontal EEG theta changes assess the training improvements of novices in flight simulation tasks. Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, July 3-7. Pp. 6619-6622.
    7. Boksem, M. A. S., Meijman, T. F., & Lorist, M. M. (2005) Effects of mental fatigue on attention: An ERP study, Cognitive Brain Research, 25, 107-116.
    8. Byrne, A. (2011) Measurement of Mental Workload in Clinical Medicine: A Review Study. In: Anesthesiology and Pain Medicine. ISSN 2228 – 7531, 2011, vol. 1, no. 2, p. 90– 94.
    9. Cain, B. (2007) A Review of the Mental Workload Literature. Toronto, Canada: Defence Research and Development Canada Toronto Human System Integration Section, Report No. : RTO-TRHFM-121-Part-II. Contract No.
    10. Cajochen, C., Krauchi, K., Von Arx, M. A., Mori, D., Graw, P., and Wirz-Justice, A. (1996) Daytime melatonin administration enhances sleepiness and theta/alpha activity in the waking EEG. Neuroscience Letters, 207, 209-213.
    11. Chen, F., Ruiz, N., Choi, E., Epps, J., Khawaja, M. A., Taib, R., and Wang, Y. (2012) Multimodal behavior and interaction as indicators of cognitive load. ACM Transactions on Intelligent Systems and Technology, 2(4), 1-36.
    12. Cheng, S. Y., and Hsu, H. T. (2011) Mental fatigue measurement using EEG. In Nota G. (Eds.), Risk Management Trends. InTech. doi: 10.5772/16376
    13. Cheng, S. Y., Lee, H. Y., Shu, C. M., & Hsu, H. T. (2007) Electroencephalographic study of mental fatigue in visual display terminal task. Medical and Biological Engineering, 27, 124-131.
    14. Chi, C. F. & Lin, F. T. (1998) A comparison of seven visual fatigue assessment techniques in three data-acquisition VDT tasks. Human Factors, 40, 577-590.
    15. Cinaz, B., La Marca, R., Arnrich, B., and Troster, G. (2010) Towards Continuous Monitoring of Mental Workload. Proceedings of 5th International Workshop on Ubiquitous Health and Wellness, Cophenhagen, September 26-29.
    16. Cote, D., Caron, A., Aubert, J., Desrochers, V., and Ladouceur, R. (2003) Near wins prolong gambling on a video lottery terminal. Journal of Gambling Studies, 19, 433-438.
    17. De Waard, D. (1996) The measurement of drivers’ mental workload (Doctoral dissertation). Univer. of Groningen Haren, Netherlands.
    18. De Waard, D., Kruizinga, A., and Brookhuis, K. A. (2008) The consequence of an increase in heavy goods vehicles for passenger car drivers’ mental workload and behavior: A simulator study. Accident Analysis and Prevention, 40(2), 818-828.
    19. Dussault, C., Jouanin, J. C., Philippe, M., and Guezennec, C. Y. (2005) EEG and ECG changes during simulator operation reflect mental workload and vigilance. Aviation, Space, and Environmental Medicine, 76(4), 344-351.
    20. Eoh, H. J., Chung, M. K., and Kim, S. H. (2004) Electroencephalographic study of drowsiness in simulated driving with sleep deprivation. International Journal of Industrial Ergonomics, 35, 307-320.
    21. Emoto, M., Niida, T., and Okana, F. (2005) Repeated Vergence Adaptation Causes the Decline of Visual Functions in Watching Stereoscopic Television. Journal of Display Technology, 1, 328-340.
    22. Esposito, F., Aragri, A., Piccoli, T., Tedeschi, G., Goebel, R., and Di Salle, F. (2009) Distributed analysis of simultaneous EEG–fMRI time-series: Modeling and interpretation issues. Magnetic Resonance Imaging, 27(8), 1120-1130.
    23. Fairclough, S. H., Venables, L., and Tattersall, A. (2005) The influence of task demand and learning on the psychophysiological response. International Journal of Psychophysiology, 56, 171-184.
    24. Fairclough, S. H., and Venables, L. (2006) Prediction of subjective states from psychophysiology: a multivariate approach. Biological Psychology, 71, 100-110.
    25. Fisch, B. J. (1999) Fisch and Sphelmann’s EEG Primer : basic principles of digital and analog EEG (3nd Ed.). Netherlands: Elsevier Science BV.
    26. Flachenecker, P., Hartung, H. P., and Reiners, K. (1997) Power spectrum analysis of heart rate variability in Guillain-Barre syndrome. A longitudinal study. Brain, 120, 1885-1894.
    27. Fournier, L. R., Wilson, G. F., and Swain, C. R. (1999) Electrophysiological, behavioural and subjective indexes of workload when performing multiple tasks: manipulations of task difficulty and training. International Journal of Psychophysiology, 31, 129-145.
    28. Gaillard, A. W. K., and Wientjes, C. J. E. (1994) Mental load and work stress as two types of energy mobilization. Work and Stress, 8, 141-152.
    29. Gunnarsson, E., and Soderberg, I. (1983) Eye strain resulting from VDT work at the Swedish telecommunications administration. Applied Ergonomics, 14, 61-69.
    30. Hart, S. G. (1989) Crew workload-management strategies: A critical factor in systemperformance. Proccedings of fifth International Symposium on Aviation Psychology, Columbus, OH. April 17-20. Pp. 22-27.
    31. Hockey, G. R. J., Briner, R. B., Tattersall, A. J., and Wiethoff, M. (1989) Assessing the impact of computer workload on operator stress: the role of system controllability. Ergonomics, 32(11), 1401-1418.
    32. Hong, J., Li, X., Xu, F., Jiang, Y., and Li, X. (2012) The mental workload judgment in visual cognition under multitask meter scheme. International Journal of the Physical Sciences, 7(5), 787-796.
    33. Horne, J. A., and Reyner, L. A. (1996) Counteracting driver sleepiness: effects of napping, caffeine, and placebo. Psychophysiology, 33, 306-309.
    34. Howells, F., Stein, D. J., and Russell, V. A. (2010) Perceived mental effort correlates with changes in tonic arousal during attentional tasks. Behavioral and Brain Functions, 6, 1-39.
    35. Iwasaki, T., and Akiya, S. (1991) The significance of changes in CFF values during performance on a VDT - based visual task. In M. K. and E. D. (Ed.), Towards human work: solutions to problems in occupational health and safety. London, Taylor and Francis, Pp. 352-357.
    36. Iwasaki, T., and Kurimoto, S. (1987) Objective evaluation of eye strain using measurements of accommodative oscillation. Ergonomics, 30, 581-587.
    37. Jensen, O., and Tesche, C. D. (2002) Frontal theta activity in humans increases with memory load in a working memory task. European Journal of Neuroscience, 15, 1395-1399.
    38. Jung, T., Makeig, S., Stensmo, M., and Sejnowski, T. J. (1997) Estimating alertness from the EEG power spectrum. IEEE, Transactions on Biomedical Engineering, 44(1), 60-69.
    39. Klimesch, W. (1999) EEG alpha and theta oscillations reflect cognitive and memoryperformance: a review and analysis. Brain Research Reviews, 29, 169-195.
    40. Kramer, A. F. (1991) Physiological metrics of mental workload: A review of recent progress. In D. L. Damos (Ed.), Multiple-task performance. London, Taylor and Francis. Pp. 279-328.
    41. Krupinski, E., and Reiner, B. I. (2012) Real-Time Occupational Stress and Fatigue Measurement in Medical Imaging Practice. The Journal of Digital Imaging, 25(3), 319-324.
    42. Kuze, J., and Ukai, K. (2008) Subjective evaluation of visual fatigue caused by motion images. Displays, 29, 159-166.
    43. Lafrance, C., Dumont, M. (2000) Diurnal variations in the waking EEG: comparison with sleep latencies and subjective alertness. Journal of Sleep Research, 9, 243-248.
    44. Lal, S. K. L., and Craig, A. (2001) A critical review of the psychophysiology of driver fatigue. Biological Psychology, 55, 173-194.
    45. Lambooij, M., IJsselsteijn, W., Fortuin, M., and Heynderickx, I. (2009) Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review. Journal of Imaging Science and Technology, 53(3), 030201-030214.
    46. Laubli, T., Hunting, W., and Grandjean, E. (1981) Postural and Visual Loads at VDT Workplaces: II. Lighting conditions and visual impairments. Ergonomics, 24, 917-931.
    47. Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C., Krakow,K. (2003) EEG-correlated fMRI of human alpha activity. Neuroimage, 19, 1463-1476.
    48. Leedal, J. M., and Smith, A. F. (2005) Methodological approaches to anesthetist’s workload in the operating theatre. British Journal of Anaesthesia, 94(6), 702-709.
    49. Lin, Y., and Cai, H. (2009) A method for building a real-time cluster-based continuous mental workload scale. Theoretical Issues in Ergonomics Science, 10(6), 531-543.
    50. Lin, Y. H., Chen, C. Y., Lu, S. Y., and Lin, Y. C. (2008) Visual fatigue during VDT work: Effects of time-based and environment-based conditions. Displays, 29, 487-492.
    51. Lorenzo, I., Ramos, J., Arce, C., Guevara, M. A., and Corsi-Cabrera, M. (1995) Effect of Total Sleep Deprivation on Reaction Time and Waking EEG Activity in Man. American Sleep Disorders Association and Sleep Research Society, 18(5), 346-354.
    52. Maestri, R., Raczak, G., Danilowicz-Szymanowicz, L., Torunski, A., Sukiennik, A., Kubica, J., La Rovere, M. T., and Pinna, G. D. (2010) Reliability of heart rate variability measurements in patients with a history of myocardial infarction. Clinical Science, 118(3), 195-201.
    53. Malik, M., Camm, A.J., Bigger, Jr. JT (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17(3), 354-381.
    54. Meng, Q. R., Hu, J. M., Wang, E., and Qu, H. J. (2006) Late Cenozoic denudation by large-magnitude landslides in eastern edge of Tibetan Plateau. Earth and Planetary Science Letters, 243, 252-267.
    55. Mikhail, M. and El-Ayat, K. (2013) Using minimal number of electrodes for emotion detection using brain signals produced from a new elicitation technique. International Journal of Autonomous and Adaptive Communications Systems, 6, 80-97.
    56. Miyake, S., Yamada, S., Shoji, T., Takae, Y., Kuge, N., Yamamura, T. (2009) Physiological responses to workload change. A test/retest examination. Applied Ergonomics, 40, 987-996.
    57. Moon, S. M., and Lord, R. G. (2006) Individual differences in automatic and controlled regulation of emotion and task performance. Human Performance, 19, 327-356.
    58. Mukherjee, S., Yadiv, R., Yung, I., Zajdel, D. P., and Oken, B. S. (2011) Sensitivity to mental effort and test-retest reliability of heart rate variability measures in healthy seniors. Clinical Neurophysiology, 122(10), 2059-2066.
    59. Mulder, G., Mulder, L. J., Meijman, T. F., Veldman, J. B. and Van Roon, A. M. (2000) A Psychophysiological Approach to Working Conditions. In R. W. Backs and W. Boucsein (Eds.), Engineering psychophysiology. Issues and Applications. London: Lawrence Erlbaum Associates. Pp. 139-160.
    60. Mulder, L. J. M., Dijksterhuis, C., Stuiver, A., and de Waard, D. (2009) Cardiovascular state changes during performance of a simulated ambulance dispatchers’ task: potential use for adaptive support. Applied Ergonomics, 40, 965-977.
    61. Nickel, P., and Nachreiner, F. (2003) Sensitivity and diagnosticity of the 0.1 Hz component of heart rate variability as an indicator of mental workload. Human Factors, 45, 575-590.
    62. Nishiyama, K. (1990) Ergonomics aspects of the health and safety of VDT work. Ergonomics, 33, 659-685.
    63. Osaka, N. (1985) The effect of VDT color on visual fatigue in the fovea and periphery of the visual filed. Displays, 6, 138-140.
    64. Papadelis, C., Kourtidou-Papadeli, C., Bamidis, P., and Albani, M. (2007) Effects of imagery training on cognitive performance and use of physiological measures as an assessment tool of mental effort. Brain and Cognition, 64(1), 74-85.
    65. Perry, C. M., Sheik-Nainar, M. A., Segall, N., Ma, R. and Kaber, D. B. (2008) The effects of physical workload on situation awareness and cognitive task performance in multitasking. Theoretical Issues in Ergonomics Science, 9, 95-113.
    66. Philipp, P. C., Udo, E., and Peter, U. (2003) Experimental evaluation of eye-blink parameters as a drowsiness measure. European Journal of Applied Physiology, 89, 319-325.
    67. Putman, P., van Peer, J.,Maimari, I., and van der Werff, S. (2010) EEG theta/beta ratio in relation to fear-modulated response-inhibition, attentional control, and affective traits. Biological Psychology, 83, 73-78.
    68. Rietschel, J. C., Miller, M. W., Gentili, R. J., Goodman, R. N., Mcdonald, C. G., and Hatfield, B. D. (2012) Cerebral-cortical networking and activation increase as a function of cognitive-motor task difficulty. Biological Psychology, 90, 127-133.
    69. Roscoe, A. H. (1992) Assessing pilot workload - why measure heart-rate, HRV and respiration. Biological Psychology, 34(2-3), 259-287.
    70. Ros, T., Munneke, M. A. Ruge, M., D., Gruzelier, J. H., and Rothwell, J. C. (2010) Endogenous control of waking brain rhythms induces neuroplasticity in humans. European Journal of Neuroscience, 31(4), 770-778.
    71. Rouse, W. B., Edwards, S. L., and Hammer, J. M. (1993) Modeling the dynamics of mental workload and human performance in complex systems. IEEE Transactions on Systems, Man, and Cybernetics, 23, 1662-1671.
    72. Saito, K. (1999) Review article: Measurement of fatigue in industries. Industrial Health, 37, 134-142.
    73. Saito, S., Sotoyama, M., and Taptagaporn, S. (1994) Physiological indices of visual fatigue due to VDT operation: pupillary reflexes and accommodative responses. Industrial Health, 32, 57-66.
    74. Schliefer, L. M., and Okogbaa, O. G. (1990) System response time and method of pay: cardiovascular stress effects in computer-based tasks. Ergonomics, 33, 1495-1509.
    75. Sheedy, J. E., Hayes, J., and Engle, J. (2003) Is all asthenopia the same? Optometry and Vision Science, 80, 732-739.
    76. Shen J, Barbera J, Shapiro CM (2006) Distinguishing sleepiness and fatigue: focus on definition and measurement. Sleep Med Rev 10, 63–76.
    77. Smith, M. E., Gevins, A., Brown, H., Karnik, A., and Du, R. (2001) Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction. Human Factors, 43(3), 366-380.
    78. Taelman, J., Vandeput, S., Gligorijević, I., Spaepen, A., and Van Huffel, S. (2011). Time-frequency heart rate variability characteristics of young adults during physical, mental and combined stress in laboratory environment. Proceedings of the 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, Massachusetts, August 30-September 3. Pp. 1973-1976.
    79. Tortella-Feliu, M., Morillas-Romero, A., Balle, M., Llabrés, J., Bornas, X., and Putman, P. (2014) Spontaneous EEG activity and spontaneous emotion regulation. International Journal of Psychophysiology, 94, 365-372
    80. Wickens, C.D. and Hollands, J.G. (1999). Engineering Psychology and Human Performance. Upper Saddle River, New Jersey, Prentice Hall.
    81. Widyanti, A., Johnson, A., and De Waard, D. (2013) Adaptation of the Rating Scale Mental Effort (RSME) for use in Indonesia. International Journal of Industrial Ergonomics, 43, 70-76.
    82. Wilson, G. F. (1992) Applied use of cardiac and respiration measures: practical considerations and precautions. Biological Psychology, 34, 163-178.
    83. Wilson, G. F. (2002) An analysis of mental workload in pilots during flight using multiple psychophysiological measures. International Journal of Aviation Psychology, 12, 3-18.
    84. Wijesuriya, N., Tran, Y., and Craig, A. (2007) The psychophysiological determinants of fatigue. International Journal of Psychophysiology, 63, 77-86.
    85. Wilson, G. F., Swain, C. R., and Ullsperger, P. (1999) EEG power changes during a multiple level memory retention task. International Journal of Psychophysiology, 32, 107-118.
    86. Wu, H. C. (2012) Visual Fatigue and Performances for the 40-min Mixed Visual Work with a Projected Screen. The Ergonomics Open Journal, 5, 10-18.
    87. Yagi, Y., Ikoma, S., and Kikuchi, T. (2009) Attention modulation of the mere exposure effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1403-1410.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE