研究生: |
戴士展 Tai, Shih-Chan |
---|---|
論文名稱: |
第一原理研究鈮磷硫化物與相關化合物的超導性質 First principle Studies of Superconducting Properties of NbPS-type Compounds |
指導教授: |
鄭弘泰
Jeng, Horng-Tay |
口試委員: |
鄭澄懋
Cheng, Cheng-Maw 林俊良 Lin, Chun-Liang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 46 |
中文關鍵詞: | 超導 、第一原理 |
外文關鍵詞: | superconductor, first principle |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由P. C. Donohue與P. E. Bierstedt於1969年所發表的論文中表明NbPS、TaPS、NbPSe的超導性質[1],1999年由Ichimin Shirotani發表的實驗結果也探討了NbPS的電聲子交互作用係數[2]。我們以第一原理以及密度泛函微擾理論研究這些材料的電聲子結構與超導性質,在NbPS的研究中,我們計算所得到的超導臨界溫度為15K,與Donohue和Bierstedt的實驗結果12K相近,而電聲子交互作用係數的計算結果(λ=1.01)也與Ichimin Shirotani等人的實驗結果(λ=0.81)差異不大。在TaPS、NbPSe的研究中,我們分別得到11K、6K的超導臨界溫度,然而,在Donohue與Bierstedt的論文中提到溫度降至1.25K皆未出現超導現象。除超導的研究以外,我們從它們的能帶結構中看出疑似有能帶反轉的現象。NbPS、TaPS、NbPSe的晶體結構相同,電子結構也相近,我認為它們會有相似的超導性質,然而,近年只有NbPS有新的實驗證據,因此,我認為要有新的實驗確認TaPS與NbPSe是否有超導現象,並以其他的研究確認是否是拓樸材料。
Superconductivity of ternary compounds NbPS, TaPS and NbPSe have been studied with experiments in 1969 by P. C. Donohue and P. E. Bierstedt [1]. The electron-phonon constant of NbPS was also reported by Ichimin Shirotani in 1999 [2]. We use density functional perturbation theory to calculate electron-phonon interaction and superconducting properties of these compounds. On the study of NbPS, we found the electron-phonon constant λ=1.01 and the critical temperature T_c=15K, which are consistent with the result of experiments (λ=0.81, T_c=12K). In addition, the results of our calculation show that TaPS and NbPSe are also superconductors. However, they do not show superconductivity down to 1.25K in experiments done by Donohue and Bierstedt. We also found band inversion in the materials. We suggest more experience to check superconducting properties of these materials, and more research to confirm whether they are topological materials or not.
[1] P. C. Donohue and P. E. Bierstedt, The Synthesis, Crystal Structure, and Superconducting Properties of Niobium Phosphorus Sulfide, Niobium Phosphorus Selenide, and Tantalum Phosphorus Sulfide, Inorg. Chem. 8, 2690, (1969).
[2] Ichimin Shirotani et al., Superconductivity of niobium phosphorous sulphide, NbPS, prepared at high pressure, J. Phys.: Condens. Matter 11 6231, (1999).
[3] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of Superconductivity, Phys. Rev. 108, 1175, (1957).
[4] F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Physik 52, 555, (1928).
[5] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136, B864, (1964).
[6] M. Born and J. R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. Phys. 84, 457, (1927).
[7] W. Kohn and L. J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133, (1965).
[8] Feliciano Giustino, Electron-phonon Interaction from First Principles, Rev. Mod. Phys. 89, 015003, (2017).
[9] W. L. McMillan, Transition Temperature of Strong-Coupled Superconductors, Phys. Rev. 167, 331, (1968).
[10] P. B. Allen and R. C. Dynes, Transition Temperature of Strong-coupled Superconductors Reanalyzed, Phys. Rev. B 12, 905, (1975).
[11] G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48, 13115, (1993).
[12] G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mat. Sci. 6, 15, (1996).
[13] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865, (1996).
[14] P. Giannozzi et al., QUANTUM ESPRESSO: a modular and opensource software project for quantum simulations of materials, J. Phys.: Condens. Matter 21 395502, (2009).
[15] M. Wierzbowska, S. de Gironcoli and P. Giannozzi, Origins of low- and high-pressure discontinuities of Tc in niobium, arXiv:cond-mat/0504077 [cond-mat.supr-con].
[16] H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188, (1976).
[17] W. Setyawan and S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Comp. Mater. Sci. 49, 299, (2010).
[18] Charles P. Poole Jr., Horacio A. Farach, Richard J. Creswick, Superconductivity, (Academic Press).
[19] Gihun Ryu et al, Superconductivity in a PbFCl-type pnictide: NbSiAs, EPL 99, 17002, (2012).