簡易檢索 / 詳目顯示

研究生: 周明璇
Chou, Ming-Hsuan
論文名稱: 建構半導體晶圓製造廠跨廠績效評估模式及其實證研究
Construct Inter-fab Efficiency Evaluation Models for Semiconductor Wafer Fabrication Facilities and its Empirical Study
指導教授: 簡禎富
Chien, Chen-Fu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 139
中文關鍵詞: 績效評估跨廠績效資料包絡分析法紫式決策分析倒傳遞類神經網路半導體製造
外文關鍵詞: performance evaluation, inter-fab efficiency, data envelopment analysis, UNISON decision framework, backpropagation neural network, semiconductor manufacturing
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體為資本密集且高度競爭的產業,因此為了維持企業的競爭優勢,如何有效地運用各種投入資源以提供更多產出以提升生產力即成為各企業重要的課題。回顧過去在探討半導體績效之文獻,大部分是針對半導體同業之間的比較,對於企業內部各個廠區之效率評估則鮮少著墨。本研究目的係建立半導體業之跨廠的生產績效評估,利用資料包絡分析模式使用多項製造指標以衡量各廠之相對效率,同時考量理論與實務的情況給予各項指標改善的方向與建議。藉由企業內部廠際間的評比,可以幫助管理者瞭解各個決策單位(Decision Measure Unit, DMU)的執行狀況,並作適當地資源配置,參考評估的結果設定改善的方向與幅度,更進一步,藉由廠與廠之間的學習與競爭,將有助於整體績效的提升。依據實務上資料會不斷更新的特性,更進一步使用BPNN建構跨廠績效之預測模式,使得企業能夠做即時性的評估,並針對現在或未來擬定合適的策略和資源的規劃。本研究結果指出晶圓廠持續擴廠可能會讓效率呈反向下降,因此各廠必須特別評估擴廠是否合乎效益,並以實例說明生產規模與生產績效之間的變化趨勢,分析各廠所面臨的問題及改善方向,也提供未來建廠的參考依據。跨廠績效評比亦可找出各廠的優勢與弱勢指標,提供管理者如何強化優勢與改善弱勢的方向,以更有效的資源分配來提升跨廠效率值,並可根據跨廠效率預測結果,讓管理者事先對未來效率值可能下降的廠提高警覺,加以調整資源的配置。有鑑於此,實證研究進一步驗證了本研究之效度與可行性。


    Semiconductor industry is capital intensive and competitive. Thus, it is important to utilize various resources efficiently to generate products for maintaining competitive advantages. Most of the existing studies on semiconductor performance evaluation focused on the company-to-company comparison. This study aimed to construct efficiency evaluation among the semiconductor fabrication facilities(fabs) since little research has been done on fab-to-fab efficiency evaluation (i.e. inter-fab evaluation.) In particular, the proposed model used multiple indices to measure inter-fab relative efficiency through data envelopment analysis. Managers can understand each decision making unit’s condition to set the improvement direction and make appropriate resource allocation decision through the inter-fab comparison. In addition, we applied backpropagation neural network to construct the inter-fab performance forecast model according to the characteristic of dynamic data update. Therefore, semiconductor companies can do real-time evaluation and make better strategies and resources planning. We used empirical data to validate the proposed model by analyzing the pattern between production scale and production efficiency. We gave improvement direction for each fab to provide references for the future fab construction. Managers can strengthen their advantage and improve their disadvantage for better inter-fab performance based on the advantage index and disadvantaged index for each fab. According to the inter-fab performance forecast results, managers can be alertness and adjust their resource allocation before the future efficiency go down. Thus, the results showed the practical viability of the proposed approach.

    第1章 緒論 1 1.1 研究背景、動機與重要性 1 1.2 研究目的 2 1.3 論文架構 3 第2章 文獻回顧 5 2.1 績效評估 5 2.1.1 績效評估定義 5 2.1.2 績效評估方法 5 2.1.3 績效評估指標 7 2.1.4 半導體產業之績效評估 10 2.2 資料包絡分析法 12 2.2.1 DEA之特性 12 2.2.2 DEA之基本模式 12 2.2.3 麥氏生產力指數 21 2.3 DEA於半導體產業之應用 25 2.4 倒傳遞類神經網路 28 第3章 紫式資料包絡分析架構於廠間績效評估 31 3.1 跨廠績效之紫式資料包絡分析架構 31 3.2 問題定義與目標釐清 33 3.3 決策單位之選取 33 3.4 投入屬性與產出屬性之篩選 33 3.5 屬性權重 36 3.6 DEA模式建構 36 3.6.1 固定規模報酬(constant returns to scale, CRS)與變動規模報酬(variable returns to scale, VRS) 36 3.6.2 產出導向(output-oriented)與投入導向(input-oriented) 36 3.6.3 DEA模式 37 3.7 評估結果分析與詮釋 37 3.7.2 效率分析 38 3.7.3 規模變動分析 38 3.7.4 差額變數分析 38 3.7.5 麥氏生產力指數分析 39 第4章 紫式資料包絡分析架構於廠間績效評估之實證研究 40 4.1 問題定義與目標釐清 40 4.2 決策單位之選取 40 4.3 投入屬性與產出屬性之篩選 40 4.4 屬性權重 45 4.5 DEA模式建構 46 4.6 評估結果分析與詮釋 46 4.6.1 效率分析 46 4.6.2 規模變動分析 65 4.6.3 差額變數分析 65 4.6.4 麥氏生產力指數分析 71 4.7 結果與討論 79 第5章 紫式資料包絡分析架構於跨廠效率預測 81 5.1 資料產生 82 5.2 預測模型建構 86 5.3 預測與分析 88 第6章 紫式資料包絡分析架構於跨廠效率預測之實證研究 90 6.1 資料產生 90 6.2 預測模型建構 93 6.3 預測與分析 108 第7章 結論 117 參考文獻 119 附錄:各廠3~6期之跨廠效率值與未來一期效率值整理表 123

    葉怡成 (1993),類神經網路模式應用與實作,儒林圖書,台北。
    高強,黃旭男,Toshiyuki Sueyoshi (2003),管理績效評估─資料包絡分析法,華泰文化出版社,台北。
    簡禎富 (2005),決策分析與管理,雙葉書廊,台北。
    Andersen, P., and Petersen, N. C. (1993), “A procedure for ranking efficiency units in data envelopment analysis,” Management Science, Vol. 39, No. 10, pp. 1261-1264.
    Banker, R. D., Charnes, A., and Cooper, W. W. (1984), “Some models for estimating technical and scale efficiencies in data envelopment analysis,” Management Science, Vol. 30, No. 9, pp. 1078-1092.
    Beamon, B. M. (1999), “Measuring supply chain performance,” International Journal of Operations and Production Management, Vol. 19, No. 3, pp. 275-292.
    Caves, D. W., Christensen, L. R., and Diewert, W. E. (1982), “The economic theory of index numbers and the measurement of input, output, and productivity,” Econometrica, Vol. 50, No. 6, pp. 1393-1414.
    Carbone, T. A. (2000), “Measuring efficiency of semiconductor manufacturing operations using data envelopment analysis (DEA),” Proceedings of the 2000 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 56-62.
    Chen, C. T., Chien, C. F., Lin, M. H., and Wang, J. T. (2004), “Using DEA to evaluate R&D performance of the computers and peripherals firms in Taiwan,” International Journal of Business, Vol. 9, No. 4, pp. 347-359.
    Chen, C. J., Wu, H. L., and Lin, B. W. (2006), “Evaluating the development of high-tech industries: Taiwan’s science park,” Technological Forecasting & Social Change, Vol. 73, No. 4, pp. 452-465.
    Chien, C. F., Lo, F. Y., and Lin, J. T. (2003), “Using DEA to measure the relative efficiency of the service center and improve operation efficiency through reorganization,” IEEE Transactions on Power Systems, Vol. 18, No. 1, pp. 366-373.
    Chien, C. F., Chen, W. C., Lo, F. Y., and Lin, Y. C. (2007), “A case study to evaluate the productivity changes of the thermal power plants of the Taiwan power company,” IEEE Transactions on Energy Conversion, Vol. 22, No. 3, pp. 680-688.
    Charnes, A., Cooper, W. W., and Rhodes, E. (1978), “Measuring the efficiency of decision making units,” European Journal of Operational Research, Vol. 2, No. 6, pp. 429-444.
    Chu, M. T., Shyu, J. Z., and Khosla, R. (2008), “Measuring the relative performance for leading fabless firms by using data envelopment analysis,” Journal of Intelligent Manufacturing, Vol. 19, No. 3, pp. 257-272.
    Cooper, W. W., Seiford, L. M., and Tone, K. (2000), Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-solver Software, Kluwer Academic Publishers, Boston.
    Cooper, W. W., Seiford, L. M., and Zhu, J. (2004), Handbook on Data Envelopment Analysis, Kluwer Academic Publishers, Boston.
    Drucker, P. F. (1973), Management Tasks, Responsibilities, Practices, Harper & Row, New York.
    Farrell, M. J. (1957), “The measurement of productive efficiency,” Journal of the Royal Statistical Society, Vol. 120, No. 3, pp. 253-290.
    Färe, R., Grosskopf, S., and Knox Lovell, C. A. (1985), The Measurement of Efficiency of Production, Kluwer Academic Publishers, Boston.
    Färe, R., Grosskopf, S., and Valdmanis, V. (1989), “Capacity, competetition and efficiency in hospitals: A nonparametric approach,” Journal of Productivity Analysis, Vol. 1, No. 2, pp. 123-138.
    Färe, R., Grosskopf, S., Lindgren, B., and Roos, P. (1992), “Productivity changes in Swedish pharmacies 1980-1989: A non-parametric malmquist approach,” Journal of Productivity Analysis, Vol. 3, No. 1-2, pp. 85-101.
    Golony, B., and Roll, Y. (1989), “An application procedure for DEA,” OMEGA, Vol. 17, No. 3, pp. 237-250.
    Kao, C., and Hwang, S. N. (2008), “Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insureance companies in Taiwan,” European Journal of Operational Research, Vol. 185, No.1, pp. 418-429.
    Keeney, R. L., and Raiffa, H. (1993), Decisions with Multiple Objectives: Preferences and Value Tradeoffs, Cambridge University Press, New York.
    Kozmetsky, G., and Yue, P. (1998), “Comparative performance of global semiconductor companies,” OMEGA, Vol. 26, No. 2, pp. 153-175.
    Leachman, R. C., and Hodges, D. A. (1996), “Benchmarking semiconductor manufacturing,” IEEE Transactions on Semiconductor Manufacturing, Vol. 9, No. 2, pp. 158-169.
    Leachman, R. C., Ding, S., and Chien, C. F. (2007), “Economic efficiency analysis of wafer fabrication,” IEEE Transactions on Automation Science and Engineering, Vol. 4, No. 4, pp. 501-512.
    Lewin, A. Y., and Minton, J. W. (1986), “Determining organizational effectiveness: Another look, and an agenda for research,” Management Science, Vol. 32, No. 5, pp. 514-538.
    Liu, F. H., and Wang, P. H. (2008), “DEA Malmquist productivity measure: Taiwanese semiconductor companies,” International Journal of Production Economics, Vol. 112, No. 1, pp. 367-379.
    Lo, F. Y., Chien, C. F., and Lin, J. T. (2001), “A DEA study to evaluate the relative efficiency and investigate the district reorganization of the Taiwan power company,” IEEE Transactions on Power Systems, Vol. 16, No. 1, pp. 170-178.
    Moore, G. E. (1965), “Cramming more components onto integrated circuits,” Electronics, Vol. 38, No. 8, pp. 114-117.
    Nickerson, J. A., and Sloan, T. W. (1999), “Data reduction techniques and hypothesis testing for analysis of benchmarking data,” International Journal of Production Research, Vol. 37, No. 8, pp. 1717-1741.
    Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985), “Learning internal representation by error propagation,” In James, L. McClelland and David E. Rumelhart, Editors, Parallel Distributed Proceeding, Vol. 1, pp. 318-362.
    Thompson, R. G., Singleton, F. D., Jr., Thrall, R. M., and Smith, B. A. (1986), “Comparative site evaluations for locating a high-energy physics lab in Texas,” Interfaces, Vol. 16, No. 6, pp. 35-49.
    Wu, C. C., Li, C. C., and Wang, T. H. (2007), “Multifactor performance measure model with an application to semiconductor industry performance,” Proceedings of the 11th WSEAS International Conference on Applied Mathematics, Dallas, Texas, U.S.A., March 22-24, pp. 129-137.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE