研究生: |
林敬倫 Lin, Chin Lun |
---|---|
論文名稱: |
二維石墨烯與矽塊材及砷化鎵薄膜蕭基接面太陽能電池研製 Fabrication of Graphene on Si and Epitaxial GaAs Schottky Junction Solar Cells |
指導教授: |
黃金花
Huang, Jin Hua |
口試委員: |
闕郁倫
Chueh, Yu Lun 黃倉秀 Huang, Tsung Shiew 黃柏瑋 Huang, Po Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 石墨烯 、二維材料 、砷化鎵 、分子束磊晶 、蕭基接面 、太陽能電池 |
外文關鍵詞: | Graphene, two-dimensional material, GaAs, MBE, Schottky Junction, Solar cell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯 (Graphene) 為單層碳原子的二維 (2D) 材料,具有許多優異的特性,如:高光穿透性、機械可撓性、低阻抗及高遷移率,理論上可與任何具有中等載子密度的半導體產生蕭基接面 (Schottky junction),在光伏元件的應用上已被視為具相當發展潛力的材料。
本論文嘗試製作石墨烯/矽以及石墨烯/砷化鎵蕭基接面太陽能電池。首先探討何種摻雜濃度的矽基板能最佳化矽/石墨烯蕭基接面太陽能電池的效率,實驗發現以摻雜濃度為10^15 cm^-3的矽基板所製備的電池具有最高效率,達1.55%。其次,本實驗以分子束磊晶(MBE)成長砷化鎵(GaAs)薄膜於高摻雜濃度的GaAs基板上,觀察磊晶薄膜之成長時間以及摻雜濃度對元件效率的影響,最終製備的電池最高效率為0.143%。
Graphene, as a two-dimensional carbon material, has shown superior material properties including high optical transmittance, excellent mechanical flexibility, low resistivity, and high carrier mobility. Theoretically, a Schottky junction can be formed by depositing graphene onto the surface of a moderately n-doped semiconductor. Thus, graphene is expected to have great potential in the field of photovoltaics.
In this study, the feasibility of graphene/Si and graphene/GaAs Schottky junction solar cells was investigated. For the former, graphene was transferred directly onto n-type Si substrates of different doping concentrations. We found that for the Si substrate doped in the order of 10^15 cm^-3, the graphene/Si junction exhibited a well rectified behavior, and the resulting solar cell showed a maximum efficiency of 1.55 %. For the type of graphene/GaAs junction solar cells, graphene was transferred directly onto the GaAs films grown by MBE on highly n-doped GaAs substrates. The effects of GaAs doping concentration and growth time on the performance of the cells were investigated. These junction solar cells showed a maximum efficiency of 0.143%.
[1] 胡淑芬, "奈米科技發展之介紹," 毫微米通訊, vol. 8, pp. 1-10, 2001.
[2] X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, et al., "Graphene-on-silicon schottky junction solar cells," Adv Mater, vol. 22, pp. 2743-2748, 2010.
[3] A. Casadei, P. Krogstrup, M. Heiss, J. A. Röhr, C. Colombo, T. Ruelle, et al., "Doping incorporation paths in catalyst-free Be-doped GaAs nanowires," Applied Physics Letters, vol. 102, p. 013117, 2013.
[4] E. Dimakis, M. Ramsteiner, A. Tahraoui, H. Riechert, and L. Geelhaar, "Shell-doping of GaAs nanowires with Si for n-type conductivity," Nano Research, vol. 5, pp. 796-804, 2012.
[5] W. Jie, F. Zheng, and J. Hao, "Graphene/gallium arsenide-based schottky junction solar cells," Applied Physics Letters, vol. 103, p. 233111, 2013.
[6] M. B. Mohamed, C. Burda, and M. A. El-Sayed, "Shape dependent ultrafast relaxation dynamics of CdSe nanocrystals: nanorods vs nanodots," Nano Letters, vol. 1, pp. 589-593, 2001.
[7] C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Some properties of spherical and rod-shaped semiconductor and metal nanocrystals," Pure and Applied Chemistry, vol. 74, pp. 1675-1692, 2002.
[8] L. Mino, G. Agostini, E. Borfecchia, D. Gianolio, A. Piovano, E. Gallo, et al., "Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases," Journal of Physics D: Applied Physics, vol. 46, p. 423001, 2013.
[9] E. F. Schubert, Quantum mechanics and structures, 2003.
[10] Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, et al., "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics," Materials Science and Engineering: R: Reports, vol. 70, pp. 320-329, 2010.
[11] 馬遠榮, "低微奈米材料," 科學發展, pp. 73-75, 2004年.
[12] G. Ruess and F. Vogt, "*Hochstlamellarer kohlenstoff aus graphitoxyhydroxyd - uber den ort der aktiven eigenschaften am kohlenstoffkristall," Monatshefte Fur Chemie, vol. 78, pp. 222-242, 1948.
[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
[14] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
[15] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
[16] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical Review B, vol. 61, pp. 14095-14107, 2000.
[17] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, p. 187401, 2006.
[18] P. R. Wallace, "The band theory of graphite," Physical Review, vol. 71, pp. 622-634, 1947.
[19] J. Hass, W. A. de Heer, and E. H. Conrad, "The growth and morphology of epitaxial multilayer graphene," Journal of Physics: Condensed Matter, vol. 20, p. 323202, 2008.
[20] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, 2009.
[21] P. Avouris, "Graphene: electronic and photonic properties and devices," Nano Lett, vol. 10, pp. 4285-4294, 2010.
[22] X. Lu, H. Huang, N. Nemchuk, and R. S. Ruoff, "Patterning of highly oriented pyrolytic graphite by oxygen plasma etching," Applied Physics Letters, vol. 75, p. 193, 1999.
[23] X. K. Lu, M. F. Yu, H. Huang, and R. S. Ruoff, "Tailoring graphite with the goal of achieving single sheets," Nanotechnology, vol. 10, pp. 269-272, 1999.
[24] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, "Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices," Applied Physics Letters, vol. 86, p. 073104, 2005.
[25] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.
[26] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, et al., "Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, 2007.
[27] M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, et al., "Scalable templated growth of graphene nanoribbons on SiC," Nat Nanotechnol, vol. 5, pp. 727-731, 2010.
[28] Z.-Y. Juang, C.-Y. Wu, C.-W. Lo, W.-Y. Chen, C.-F. Huang, J.-C. Hwang, et al., "Synthesis of graphene on silicon carbide substrates at low temperature," Carbon, vol. 47, pp. 2026-2031, 2009.
[29] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, et al., "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide," Nat Mater, vol. 8, pp. 203-207, 2009.
[30] W. S. Hummers and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, p. 1339, 1958.
[31] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al., "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, 2006.
[32] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, et al., "Highly conducting graphene sheets and Langmuir-Blodgett films," Nat Nanotechnol, vol. 3, pp. 538-542, 2008.
[33] A. G. Cano-Marquez, F. J. Rodriguez-Macias, J. Campos-Delgado, C. G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramirez-Gonzalez, et al., "Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes," Nano Letters, vol. 9, pp. 1527-1533, 2009.
[34] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature, vol. 458, pp. 877-880, 2009.
[35] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, et al., "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature, vol. 458, pp. 872-876, 2009.
[36] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, et al., "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, vol. 466, pp. 470-473, 2010.
[37] H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, "The role of defects and doping in 2D graphene sheets and 1D nanoribbons," Rep Prog Phys, vol. 75, p. 062501, 2012.
[38] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008.
[39] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, et al., "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Letters, vol. 9, pp. 30-35, 2009.
[40] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
[41] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nature Nanotechnology, vol. 3, pp. 206-209, 2008.
[42] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[43] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, et al., "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano Letters, vol. 9, pp. 4359-4363, 2009.
[44] W. Regan, N. Alem, B. n. Alemán, B. Geng, C. a. l. Girit, L. Maserati, et al., "A direct transfer of layer-area graphene," Applied Physics Letters, vol. 96, p. 113102, 2010.
[45] 蔡進譯, "超高效率太陽能電池-從愛因斯坦的光電效應談起," 物理雙月刊, pp. 701-719, 2005.
[46] Available: http://pveducation.org/pvcdrom/appendices/standard-solar-spectra
[47] N. R. P. P.S.Priambodo, D. Hartanto, Solar Cell Technology. INTECH Open Access Publisher.
[48] Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code. Available: http://www.ni.com/white-paper/7230/en/
[49] X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, et al., "High efficiency graphene solar cells by chemical doping," Nano Lett, vol. 12, pp. 2745-2750, 2012.
[50] "GaAs Zinc blende structure. Available from: http://www.chem.shef.ac.uk/chm1312001/cha01tal/compoundsemiconductors.html.."
[51] "Silicon diamond structure. Available from: http://www.chem.shef.ac.uk/chm1312001/cha01tal/elementalsemiconductors.html.."
[52] "GaAs band structure. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/bandstr.html.."
[53] "Silicon band structure. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html.."
[54] "Drift velocity versus electric field in Silicon and GaAs. Available from: http://www.globalsino.com/micro/1/1micro9939.html.."
[55] "Chapter 12: Visible-spectrum LEDs. Available from: http://ebooks.cambridge.org/chapter.jsf?bid=CBO9780511790546&cid=CBO9780511790546A100.."
[56] "GaAs basic parameters at 300K. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html.."
[57] X. Li, D. Xie, H. Park, T. H. Zeng, K. Wang, J. Wei, et al., "Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells," Advanced Energy Materials, vol. 3, pp. 1029-1034, 2013.
[58] J. R. Arthur, "Interaction of Ga and As2 molecular beams with GaAs surfaces," Journal of Applied Physics, vol. 39, pp. 4032-4034, 1968.
[59] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As2 and Ga on (100) GaAs surfaces," Surface Science, vol. 64, pp. 293-304, 1977.
[60] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As4 and Ga on (100) GaAs surfaces using a modulated molecular-beam technique," Surface Science, vol. 50, pp. 434-450, 1975.
[61] A. Y. Cho, "GaAs epitaxt by a molecular beam method - observations of surface structure on (001) face," Journal of Applied Physics, vol. 42, p. 2074, 1971.