簡易檢索 / 詳目顯示

研究生: 林敬倫
Lin, Chin Lun
論文名稱: 二維石墨烯與矽塊材及砷化鎵薄膜蕭基接面太陽能電池研製
Fabrication of Graphene on Si and Epitaxial GaAs Schottky Junction Solar Cells
指導教授: 黃金花
Huang, Jin Hua
口試委員: 闕郁倫
Chueh, Yu Lun
黃倉秀
Huang, Tsung Shiew
黃柏瑋
Huang, Po Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 98
中文關鍵詞: 石墨烯二維材料砷化鎵分子束磊晶蕭基接面太陽能電池
外文關鍵詞: Graphene, two-dimensional material, GaAs, MBE, Schottky Junction, Solar cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯 (Graphene) 為單層碳原子的二維 (2D) 材料,具有許多優異的特性,如:高光穿透性、機械可撓性、低阻抗及高遷移率,理論上可與任何具有中等載子密度的半導體產生蕭基接面 (Schottky junction),在光伏元件的應用上已被視為具相當發展潛力的材料。
    本論文嘗試製作石墨烯/矽以及石墨烯/砷化鎵蕭基接面太陽能電池。首先探討何種摻雜濃度的矽基板能最佳化矽/石墨烯蕭基接面太陽能電池的效率,實驗發現以摻雜濃度為10^15 cm^-3的矽基板所製備的電池具有最高效率,達1.55%。其次,本實驗以分子束磊晶(MBE)成長砷化鎵(GaAs)薄膜於高摻雜濃度的GaAs基板上,觀察磊晶薄膜之成長時間以及摻雜濃度對元件效率的影響,最終製備的電池最高效率為0.143%。


    Graphene, as a two-dimensional carbon material, has shown superior material properties including high optical transmittance, excellent mechanical flexibility, low resistivity, and high carrier mobility. Theoretically, a Schottky junction can be formed by depositing graphene onto the surface of a moderately n-doped semiconductor. Thus, graphene is expected to have great potential in the field of photovoltaics.
    In this study, the feasibility of graphene/Si and graphene/GaAs Schottky junction solar cells was investigated. For the former, graphene was transferred directly onto n-type Si substrates of different doping concentrations. We found that for the Si substrate doped in the order of 10^15 cm^-3, the graphene/Si junction exhibited a well rectified behavior, and the resulting solar cell showed a maximum efficiency of 1.55 %. For the type of graphene/GaAs junction solar cells, graphene was transferred directly onto the GaAs films grown by MBE on highly n-doped GaAs substrates. The effects of GaAs doping concentration and growth time on the performance of the cells were investigated. These junction solar cells showed a maximum efficiency of 0.143%.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機及目的 1 第二章 文獻回顧 3 2.1 奈米材料科技 3 2.1.1 零維奈米結構 4 2.1.2 一維奈米結構 5 2.1.3 二維奈米結構 5 2.2 Graphene 7 2.2.1 發現起源與分析 7 2.2.2 能帶結構 10 2.2.3 製備方法 13 2.2.4 石墨烯轉移至不同基板及其透明導電膜 22 2.3 太陽能電池 24 2.3.1 工作原理 24 2.3.2 能量轉換效率與電壓電流特性 25 2.3.3 等效電路模型 28 2.4 Graphene/n-Si蕭基接面太陽能電池 31 2.4.1 蕭基接面能帶結構 31 2.4.2 元件參數及效率 31 2.5 Graphene/n-GaAs蕭基接面太陽能電池 32 2.5.1 砷化鎵 (GaAs) 32 2.5.2 蕭基接面能帶結構 37 2.5.3 元件參數及效率 38 第三章 儀器介紹與實驗步驟 40 3.1 分子束磊晶 ( Molecular Beam Epitaxy, MBE )簡介 40 3.1.1 分子束磊晶系統 40 3.1.2 磊晶原理 43 3.2 旋轉塗佈機( Spin coater ) 46 3.3 電子槍真空蒸鍍系統 ( E-gun evaporator) 47 3.4 以化學氣相沉積法成長石墨烯 48 3.5 實驗步驟 49 3.5.1 Graphene/矽基板接面太陽能電池 49 3.5.2 Graphene/磊晶GaAs接面太陽能電池 52 3.6 分析儀器 55 3.6.1 掃描式電子顯微鏡 ( SEM ) 55 3.6.2 太陽模擬光量測系統 ( Solar simulator ) 56 3.6.3 外部量子效率 ( EQE ) 57 3.6.4 拉曼光譜儀 ( Raman spectrometer ) 58 3.6.5 紫外光/可見光分光譜儀(UV-vis spectrophotometer) 59 第四章 結果與討論 60 4.1 Graphene轉移至Si基板與GaAs磊晶薄膜上 60 4.1.1 SEM analysis 60 4.1.2 Raman analysis 62 4.1.3 UV-vis analysis 63 4.2 N-矽基板/Graphene太陽能電池效率之研究探討 65 4.2.1 不同摻雜濃度的N型矽基板對效率的影響 65 4.2.2 外部量子效率量測 67 4.3 N-GaAs薄膜/Graphene太陽能電池效率之研究探討 68 4.3.1 砷化鎵基板與本質摻雜薄膜 68 4.3.2 霍爾效應量測 ( Hall effect measurement ) 70 4.3.3 不同Si摻雜濃度的GaAs磊晶薄膜對效率的影響 71 4.3.4 不同GaAs磊晶薄膜時間對效率的影響 74 4.3.5 外部量子效率量測 76 第五章 結論 78 第六章 Future Work 81 第七章 參考文獻 82

    [1] 胡淑芬, "奈米科技發展之介紹," 毫微米通訊, vol. 8, pp. 1-10, 2001.
    [2] X. Li, H. Zhu, K. Wang, A. Cao, J. Wei, C. Li, et al., "Graphene-on-silicon schottky junction solar cells," Adv Mater, vol. 22, pp. 2743-2748, 2010.
    [3] A. Casadei, P. Krogstrup, M. Heiss, J. A. Röhr, C. Colombo, T. Ruelle, et al., "Doping incorporation paths in catalyst-free Be-doped GaAs nanowires," Applied Physics Letters, vol. 102, p. 013117, 2013.
    [4] E. Dimakis, M. Ramsteiner, A. Tahraoui, H. Riechert, and L. Geelhaar, "Shell-doping of GaAs nanowires with Si for n-type conductivity," Nano Research, vol. 5, pp. 796-804, 2012.
    [5] W. Jie, F. Zheng, and J. Hao, "Graphene/gallium arsenide-based schottky junction solar cells," Applied Physics Letters, vol. 103, p. 233111, 2013.
    [6] M. B. Mohamed, C. Burda, and M. A. El-Sayed, "Shape dependent ultrafast relaxation dynamics of CdSe nanocrystals: nanorods vs nanodots," Nano Letters, vol. 1, pp. 589-593, 2001.
    [7] C. F. Landes, S. Link, M. B. Mohamed, B. Nikoobakht, and M. A. El-Sayed, "Some properties of spherical and rod-shaped semiconductor and metal nanocrystals," Pure and Applied Chemistry, vol. 74, pp. 1675-1692, 2002.
    [8] L. Mino, G. Agostini, E. Borfecchia, D. Gianolio, A. Piovano, E. Gallo, et al., "Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases," Journal of Physics D: Applied Physics, vol. 46, p. 423001, 2013.
    [9] E. F. Schubert, Quantum mechanics and structures, 2003.
    [10] Z. L. Wang, R. Yang, J. Zhou, Y. Qin, C. Xu, Y. Hu, et al., "Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics," Materials Science and Engineering: R: Reports, vol. 70, pp. 320-329, 2010.
    [11] 馬遠榮, "低微奈米材料," 科學發展, pp. 73-75, 2004年.
    [12] G. Ruess and F. Vogt, "*Hochstlamellarer kohlenstoff aus graphitoxyhydroxyd - uber den ort der aktiven eigenschaften am kohlenstoffkristall," Monatshefte Fur Chemie, vol. 78, pp. 222-242, 1948.
    [13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
    [14] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
    [15] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
    [16] A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Physical Review B, vol. 61, pp. 14095-14107, 2000.
    [17] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., "Raman spectrum of graphene and graphene layers," Physical Review Letters, vol. 97, p. 187401, 2006.
    [18] P. R. Wallace, "The band theory of graphite," Physical Review, vol. 71, pp. 622-634, 1947.
    [19] J. Hass, W. A. de Heer, and E. H. Conrad, "The growth and morphology of epitaxial multilayer graphene," Journal of Physics: Condensed Matter, vol. 20, p. 323202, 2008.
    [20] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109-162, 2009.
    [21] P. Avouris, "Graphene: electronic and photonic properties and devices," Nano Lett, vol. 10, pp. 4285-4294, 2010.
    [22] X. Lu, H. Huang, N. Nemchuk, and R. S. Ruoff, "Patterning of highly oriented pyrolytic graphite by oxygen plasma etching," Applied Physics Letters, vol. 75, p. 193, 1999.
    [23] X. K. Lu, M. F. Yu, H. Huang, and R. S. Ruoff, "Tailoring graphite with the goal of achieving single sheets," Nanotechnology, vol. 10, pp. 269-272, 1999.
    [24] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, "Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices," Applied Physics Letters, vol. 86, p. 073104, 2005.
    [25] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, et al., "Electronic confinement and coherence in patterned epitaxial graphene," Science, vol. 312, pp. 1191-1196, 2006.
    [26] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, et al., "Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, 2007.
    [27] M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, et al., "Scalable templated growth of graphene nanoribbons on SiC," Nat Nanotechnol, vol. 5, pp. 727-731, 2010.
    [28] Z.-Y. Juang, C.-Y. Wu, C.-W. Lo, W.-Y. Chen, C.-F. Huang, J.-C. Hwang, et al., "Synthesis of graphene on silicon carbide substrates at low temperature," Carbon, vol. 47, pp. 2026-2031, 2009.
    [29] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, et al., "Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide," Nat Mater, vol. 8, pp. 203-207, 2009.
    [30] W. S. Hummers and R. E. Offeman, "Preparation of graphitic oxide," Journal of the American Chemical Society, vol. 80, p. 1339, 1958.
    [31] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, et al., "Graphene-based composite materials," Nature, vol. 442, pp. 282-286, 2006.
    [32] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, et al., "Highly conducting graphene sheets and Langmuir-Blodgett films," Nat Nanotechnol, vol. 3, pp. 538-542, 2008.
    [33] A. G. Cano-Marquez, F. J. Rodriguez-Macias, J. Campos-Delgado, C. G. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramirez-Gonzalez, et al., "Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes," Nano Letters, vol. 9, pp. 1527-1533, 2009.
    [34] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes," Nature, vol. 458, pp. 877-880, 2009.
    [35] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, et al., "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons," Nature, vol. 458, pp. 872-876, 2009.
    [36] J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, et al., "Atomically precise bottom-up fabrication of graphene nanoribbons," Nature, vol. 466, pp. 470-473, 2010.
    [37] H. Terrones, R. Lv, M. Terrones, and M. S. Dresselhaus, "The role of defects and doping in 2D graphene sheets and 1D nanoribbons," Rep Prog Phys, vol. 75, p. 062501, 2012.
    [38] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, p. 113103, 2008.
    [39] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, et al., "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Letters, vol. 9, pp. 30-35, 2009.
    [40] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
    [41] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nature Nanotechnology, vol. 3, pp. 206-209, 2008.
    [42] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, et al., "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
    [43] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, et al., "Transfer of large-area graphene films for high-performance transparent conductive electrodes," Nano Letters, vol. 9, pp. 4359-4363, 2009.
    [44] W. Regan, N. Alem, B. n. Alemán, B. Geng, C. a. l. Girit, L. Maserati, et al., "A direct transfer of layer-area graphene," Applied Physics Letters, vol. 96, p. 113102, 2010.
    [45] 蔡進譯, "超高效率太陽能電池-從愛因斯坦的光電效應談起," 物理雙月刊, pp. 701-719, 2005.
    [46] Available: http://pveducation.org/pvcdrom/appendices/standard-solar-spectra
    [47] N. R. P. P.S.Priambodo, D. Hartanto, Solar Cell Technology. INTECH Open Access Publisher.
    [48] Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code. Available: http://www.ni.com/white-paper/7230/en/
    [49] X. Miao, S. Tongay, M. K. Petterson, K. Berke, A. G. Rinzler, B. R. Appleton, et al., "High efficiency graphene solar cells by chemical doping," Nano Lett, vol. 12, pp. 2745-2750, 2012.
    [50] "GaAs Zinc blende structure. Available from: http://www.chem.shef.ac.uk/chm1312001/cha01tal/compoundsemiconductors.html.."
    [51] "Silicon diamond structure. Available from: http://www.chem.shef.ac.uk/chm1312001/cha01tal/elementalsemiconductors.html.."
    [52] "GaAs band structure. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/bandstr.html.."
    [53] "Silicon band structure. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html.."
    [54] "Drift velocity versus electric field in Silicon and GaAs. Available from: http://www.globalsino.com/micro/1/1micro9939.html.."
    [55] "Chapter 12: Visible-spectrum LEDs. Available from: http://ebooks.cambridge.org/chapter.jsf?bid=CBO9780511790546&cid=CBO9780511790546A100.."
    [56] "GaAs basic parameters at 300K. Available from: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html.."
    [57] X. Li, D. Xie, H. Park, T. H. Zeng, K. Wang, J. Wei, et al., "Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells," Advanced Energy Materials, vol. 3, pp. 1029-1034, 2013.
    [58] J. R. Arthur, "Interaction of Ga and As2 molecular beams with GaAs surfaces," Journal of Applied Physics, vol. 39, pp. 4032-4034, 1968.
    [59] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As2 and Ga on (100) GaAs surfaces," Surface Science, vol. 64, pp. 293-304, 1977.
    [60] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As4 and Ga on (100) GaAs surfaces using a modulated molecular-beam technique," Surface Science, vol. 50, pp. 434-450, 1975.
    [61] A. Y. Cho, "GaAs epitaxt by a molecular beam method - observations of surface structure on (001) face," Journal of Applied Physics, vol. 42, p. 2074, 1971.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE