簡易檢索 / 詳目顯示

研究生: 李昱安
Lee, Yu-An
論文名稱: 基於超像素與標籤擴散法的互動式影像分割
Interactive Image Segmentation via Superpixel-Wise Label Propagation
指導教授: 張龍紋
Chang, Long-Wen
口試委員: 陳永昌
Chen, Yung-Chang
陳煥宗
Chen, Hwann-Tzong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 55
中文關鍵詞: 互動式影像分割超像素標籤擴散半監督式學習
外文關鍵詞: Interactive Image Segmentation, Superpixel, Label Propagation, Semi-Supervised Learning
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 衡量一個互動式影像分割技術的優劣,除了比較準確度之外,所花的時間也是考量的重點之一。傳統的互動式影像分割技術在分析演算法效率時,通常僅使用一組固定的預設標籤進行一次運算;然而實際操作時,使用者會在看到結果後提供新標籤,並重複修正至滿意為止,因此這些標籤實際上應分為多次輸入。在重複操作的前提下,我們認為花費的時間應分成下列三項來討論: 一、互動次數,能以較少的互動次數達到令使用者滿意的結果者為佳;二、等待時間,在兩次互動間系統的反應時間越短越好;三、標籤數量,代表使用者提供標籤所花費的時間,少者為佳。
    在這篇論文中我們提出了一種以超像素分割與標籤擴散法(Superpixel-Wise Label Propagation; SLP)為基礎的架構,將產生的超像素轉換至一個特徵空間,利用使用者提供的初始標籤取得分群結果。此架構在影像中有突出的結構或許多不相連的背景區域時,能僅用少量資訊切割出令人滿意的結果,這是以往的演算法較難以達成的。另外我們針對互動時間進行改善,利用前次互動的結果作為下次互動的初始標籤,因此SLP能以相對少的互動次數、少量的標籤及等待時間取得相當不錯的結果。此外,利用GrabCut資料庫進行比較時,SLP優於其他方法達到最佳的結果。


    The performance of an interactive image segmentation method can be evaluated not only by the label accuracy, but also the interaction time. Generally, the conventional approaches evaluate their execution time by a single-iteration test with a set of input labels. In practice, however, the user would input the labels multiple times until obtaining satisfactory results. In a case of the multi-iteration segmentation task, the interaction time could be divided into three parts. Firstly, the times of interactions. The total iterations of user interaction should be as less as possible. Secondly, the waiting time. The waiting time between two iterations should be short. Thirdly, the quantity of the given labels. Less information provided is the better.
    In this paper, we propose an interactive segmentation method based on over-segmentation and label propagation technique. We map the superpixels to a five dimensional feature space, then get the segmentation result by propagating the given labels. The proposed “Superpixel-Wise Label Propagation” (SLP) method can handle the object with mesh or long structures by just a few given information. The interaction time is also concerned in SLP. We adopt the segmentation result as the input labels of the next iteration. It decreases not only the computational time, but also the total times of interactions. Furthermore, SLP achieves state-of-the-art of GrabCut dataset comparing with other methods.

    Chapter 1. Introduction 1 Chapter 2. Related Work 3 Chapter 3. The Proposed Method 4 3.1 Pre-Processing 7 3.1.1 Over-Segmentation 7 3.1.2 Feature Extraction 10 3.1.3 Graph Construction 11 3.2 Label Propagation 13 3.3 Connectivity handling 20 3.4 Label conflict handling 24 Chapter 4. Experiment Results 29 Chapter 5. Conclusions 51 References 52

    [1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, "SLIC Superpixels Compared to State-of-the-Art Superpixel Methods," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, pp. 2274-2282, 2012.
    [2] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, "Contour detection and hierarchical image segmentation," IEEE transactions on pattern analysis and machine intelligence, vol. 33, pp. 898-916, 2011.
    [3] J. Bai and X. Wu, "Error-tolerant scribbles based interactive image segmentation," in IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 392-399.
    [4] Y. Boykov and G. Funka-Lea, "Graph cuts and efficient N-D image segmentation," International journal of computer vision, vol. 70, pp. 109-131, 2006.
    [5] O. Duchenne, J.-Y. Audibert, R. Keriven, J. Ponce, and F. Ségonne, "Segmentation by transduction," in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1-8.
    [6] P. F. Felzenszwalb and D. P. Huttenlocher, "Efficient graph-based image segmentation," International Journal of Computer Vision, vol. 59, pp. 167-181, 2004.
    [7] L. Gorelick, O. Veksler, Y. Boykov, and C. Nieuwenhuis, "Convexity shape prior for segmentation," in European Conference on Computer Vision, ed: Springer, 2014, pp. 675-690.
    [8] L. Grady, "Random walks for image segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, pp. 1768-1783, 2006.
    [9] V. Gulshan, C. Rother, A. Criminisi, A. Blake, and A. Zisserman, "Geodesic star convexity for interactive image segmentation," in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3129-3136.
    [10] D. Hoiem, A. A. Efros, and M. Hebert, "Automatic photo pop-up," ACM Transactions on Graphics, vol. 24, pp. 577-584, Jul 2005.
    [11] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," International journal of computer vision, vol. 1, pp. 321-331, 1988.
    [12] T. H. Kim, K. M. Lee, and S. U. Lee, "Nonparametric higher-order learning for interactive segmentation," in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 3201-3208.
    [13] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp, "Image segmentation with a bounding box prior," in International Conference on Computer Vision, 2009, pp. 277-284.
    [14] Z. Li and J. Chen, "Superpixel Segmentation using Linear Spectral Clustering," in IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1356-1363.
    [15] E. N. Mortensen and W. A. Barrett, "Intelligent scissors for image composition," in Proceedings of the 22nd Conference on Computer Graphics and Interactive Techniques, 1995, pp. 191-198.
    [16] H. Nickisch, C. Rother, P. Kohli, and C. Rhemann, "Learning an interactive segmentation system," in Proceedings of the Seventh Indian Conference on Computer Vision, Graphics and Image Processing, 2010, pp. 274-281.
    [17] C. Rother, V. Kolmogorov, and A. Blake, ""GrabCut" - Interactive foreground extraction using iterated graph cuts," ACM Transactions on Graphics, vol. 23, pp. 309-314, Aug 2004.
    [18] O. Veksler, Y. Boykov, and P. Mehrani, "Superpixels and supervoxels in an energy optimization framework," in European Conference on Computer Vision, ed: Springer, 2010, pp. 211-224.
    [19] J. Wang, T. Jebara, and S.-F. Chang, "Graph transduction via alternating minimization," in Proceedings of the 25th international conference on Machine learning, 2008, pp. 1144-1151.
    [20] J. Wu, Y. Zhao, J.-Y. Zhu, S. Luo, and Z. Tu, "Milcut: A sweeping line multiple instance learning paradigm for interactive image segmentation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 256-263.
    [21] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, "Learning with local and global consistency," Advances in neural information processing systems, vol. 16, pp. 321-328, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE