研究生: |
張育慈 Chang, Yu-Tzu |
---|---|
論文名稱: |
金屬(亞)磷酸鹽有機-無機複合奈米孔骨架之合成、鑑定與應用研究 Syntheses, Characterizations and Functional Properties of Nanoporous Frameworks of Organic-inorganic Hybrid Metal Phosphates and Phosphites |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
林嘉和
Lin, Chia-Her 李光華 Lii, Kwang-Hwa 黃暄益 Huang, Hsuan-Yi 鄭建鴻 Cheng, Chien-Hong |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 185 |
中文關鍵詞: | 金屬(亞)磷酸鹽 、複合骨架 、氣體吸附 、有機感測 、超疏水 |
外文關鍵詞: | metal phosphorus oxides, hybrid frameworks, gas adsorption, organic sensing, superhydrophobicity |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是利用中溫中壓水熱合成法得到五個有機-無機複合金屬(亞)磷酸鹽結構。所有化合物的晶體結構皆以單晶X光繞射數據進行結構解析,以粉末X光繞射方法鑑定樣品純度後,再進行其化學及物理性質研究。依照結構特色與相關性質,研究結果分為2個系統討論:
在第一個系統中,我們成功地合成出兼具高結構穩定性以及孔洞性的三維結構骨架,其骨架化學式為[In2(HPO3)2(C2O4)(L)] (L = bpy為In-bpy;L = dpe為In-dpe),兩者在光學性質以及結構上都展現出其特殊性並且各自發展出不同的應用價值。In-bpy在螢光偵測p-xylene的研究上,不僅展現出明顯的放光提升量,其偵測選擇性與重複性也顯現出良好的效果,在金屬(亞)磷酸鹽領域中,In-bpy是第一個發展出以螢光偵測有機物質存在與否的金屬亞磷酸鹽孔洞材料。除此之外,In-dpe則是首次以[2+2]光照合環的方式改變材料表面的性質,將其由親水性轉變為超疏水性質。重要的是,結構表面轉變為超疏水性質的化合物In-dpe-C18,不管是結構熱穩定度或孔洞性質皆沒有明顯的改變。
第二個系統中,為了開發出具不同孔洞特性和高結構穩定性的金屬(亞)磷酸鹽骨架,我們以不同金屬中心搭配磷酸或亞磷酸分別合成出同樣具gismondine-like sheets的中性有機-無機複合金屬(亞)磷酸鹽之孔洞材料,其骨架化學式分別為[Ga2(HPO3)2(C2O4)(bpy)] (Ga-bpy)和[Zn2(VOH2O)(PO4)2(L)] (L = bpy為ZnV-bpy;L = dpe為ZnV-dpe)。這系列化合物不僅有良好的熱穩定性外,也具備良好的水氣和酸鹼穩定度。藉由改變金屬中心,我們成功地引導出罕見的零維籠狀孔洞材料 (Ga-bpy),其具有優異的二氧化碳吸附能力且氫氣吸附量也是目前金屬(亞)磷酸鹽的領域中最高的。此外,反應條件的調控,則可以使原本不具有孔洞性質的有機-無機複合鋅磷酸鹽結構轉變為具有一維孔洞性質的複合鋅釩雙金屬磷酸鹽結構。值得注意的是,具有未飽和金屬中心的ZnV-bpy,雖然CO2吸附量比Ga-bpy低,但CO2/N2吸附選擇率則高出許多。
總結以上兩個系統,我們藉由策略性的實驗設計合成出一系列兼具高穩定性和孔洞性之多功能金屬(亞)磷酸鹽材料並且各自發展出不同的應用價值。最重要的是,這些新穎的化合物成功地引領金屬(亞)磷酸鹽材料發展成為具有前景的應用導向材料。
The synthesis, structure characterization, and properties of five organic-inorganic hybrid metal phosphorus oxides (MPOs) synthesized under hydrothermal reaction are described and discussed in this thesis. All crystal structures were determined by single-crystal X-ray diffraction method and the purity was examined by powder X-ray diffraction analysis; their chemical and physical properties were also investigated. These compounds are grouped into two systems based on structure features and their properties.
In the first system, we discovered two durable indium phosphite-based hybrid materials which were built up from oxalate-embedded MPO sheet and bipyridyl-type linkers exhibited significant porosity substantiated by CO2 adsorption. The formulas of host frameworks are [In2(HPO3)2(C2O4)(L)] (L = bpy for In-bpy;L = dpe for In-dpe). According to their structural characteristics, we explored organic sensing ability for In-bpy and applied surface modification to In-dpe. In-bpy exhibits a turn-on fluorescence signal when in contact with p-xylene, leading to be the first MPO-based sensing material with selectivity and recyclability. Furthermore, In-dpe demonstrates a facile and unprecedented route to the superhydrophobicity of porous solids via a [2+2] photocycloaddition reaction between linkers and foreign units.
In the second system, to develop robust MPOs with different pore characteristics, we synthesized a series of organic-inorganic hybrid MPOs bearing gismondine-like sheets. The formulas of host frameworks are [Ga2(HPO3)2(C2O4)(bpy)] (Ga-bpy) and [Zn2(VOH2O)(PO4)2(L)] (L = bpy for ZnV-bpy;L = dpe for ZnV-dpe). They showed significant porosity and excellent chemical and physical stability in harsh conditions. By manipulating metal center or reaction condition, two distinct pore geometries were created: (1) cage-like pore in Ga-bpy which exhibited significant CO2 adsorption and H2 uptake higher than all other known MPOs; (2) one-dimensional channel-type pore in two ZnV-L structures which revealed high CO2/N2 selectivity.
In this research, a series of MPOs with durability and porosity have been synthesized and characterized to possess varied functional properties. The new findings in the research open a new door for developing MPO-based hybrid structures into practically useful materials.
第一章
[1] a) M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, Nature 1988, 331, 698-699; b) M. Estermann, L. B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320-323; c) M. W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. P. MacKay, A. Ferreira, J. Rocha, S. Lidin, Nature 1994, 367, 347-351; d) P. Feng, X. Bu, G. D. Stucky, Nature 1997, 388, 735-741; e) G.-Y. Yang, S. C. Sevov, J. Am. Chem.Soc. 1999, 121, 8389-8390; f) C. H. Lin, S. L. Wang, K. H. Lii, J. Am. Chem.Soc. 2001, 123, 4649-4650; g) X. Zou, T. Conradsson, M. Klingstedt, M. S. Dadachov, M. O'Keeffe, Nature 2005, 437, 716-719; h) J. Sun, C. Bonneau, A. Cantin, A. Corma, M. J. Diaz-Cabanas, M. Moliner, D. Zhang, M. Li, X. Zou, Nature 2009, 458, 1154-1157; i) H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang, Y. H. Lee, C. H. Lin, K. H. Lii, X. Bu, S. L. Wang, Science 2013, 339, 811-813.
[2] A. P. Cote, A. I. Benin, N. W. Ockwig, M. O'keeffe, A. J. Matzger, O. M. Yaghi, Science 2005, 310, 1166-1170.
[3] a) H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276; b) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Science 2003, 300, 1127-1129; c) S. H. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 5319-5322; d) Y. C. Chang, S. L. Wang, J. Am. Chem.Soc. 2012, 134, 9848-9851; e) H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018-1023.
[4] a) C. B. Khouw, M. E. Davis, ACS Sym. Ser. 1993, 517, 206-221; b) A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, Angew. Chem. Int. Ed. 2010, 49, 6260-6266; c) P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, Nature 2013, 495, 80; d) H.-L. Huang, S.-L. Wang, Angew. Chem. Int. Ed. 2015, 54, 965-968; e) W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, S. K. Ghosh, Chem. Soc. Rev. 2017, 46, 3242-3285.
[5] a) P. B. Moore, J. Shen, Nature 1983, 306, 356; b) J. MeurigáThomas, J. Chem. Soc., Chem. Commun. 1992, 875-876; c) N. Guillou, Q. Gao, P. M. Forster, J. S. Chang, M. Noguès, S. E. Park, G. Férey, A. K. Cheetham, Angew. Chem. Int. Ed. 2001, 40, 2831-2834; d) J. Liang, J. Li, J. Yu, P. Chen, Q. Fang, F. Sun, R. Xu, Angew. Chem. 2006, 118, 2608-2610; e) Y. Yang, N. Li, H. Song, H. Wang, W. Chen, S. Xiang, Chem. Mater. 2007, 19, 1889-1891.
[6] a) J. Plévert, T. M. Gentz, A. Laine, H. Li, V. G. Young, O. M. Yaghi, M. O'Keeffe, J. Am. Chem.Soc. 2001, 123, 12706-12707; b) Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, D. Zhao, Angew. Chem. 2001, 113, 2224-2226; c) J. Li, A. Corma, J. Yu, Chem. Soc. Rev. 2015, 44, 7112-7127.
[7] A. F. Cronstedt, Rön och beskrifning om en obekant bärg art, som kallas Zeolites, 1756.
[8] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem.Soc. 1982, 104, 1146-1147.
[9] G. Brauer, Handbook of preparative inorganic chemistry, Vol. 2, Elsevier, 2012.
[10] M. S. Wang, G. C. Guo, W. T. Chen, G. Xu, W. W. Zhou, K. J. Wu, J. S. Huang, Angew. Chem. Int. Ed. 2007, 46, 3909-3911.
[11] N.-Y. Fan, S.-L. Wang, Inorg. Chem. 1996, 35, 4708-4712.
[12] D. Hagrman, R. P. Hammond, R. Haushalter, J. Zubieta, Chem. Mater. 1998, 10, 2091-2100.
[13] X. Zou, T. Conradsson, M. Klingstedt, M. S. Dadachov, M. O'keeffe, Nature 2005, 437, 716.
[14] a) J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K. P. Lillerud, J. Am. Chem.Soc. 2008, 130, 13850-13851; b) A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2010, 43, 58-67.
[15] D. Maspoch, D. Ruiz-Molina, J. Veciana, Chem. Soc. Rev. 2007, 36, 770-818.
[16] J. Jiang, J. Yu, A. Corma, Angew. Chem. Int. Ed. 2010, 49, 3120-3145.
[17] H.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, S. L. Wang, Science 2013, 339, 811-813.
[18] a) P.-C. Jhang, Y.-C. Yang, Y.-C. Lai, W.-R. Liu, S.-L. Wang, Angew. Chem. 2009, 121, 756-759; b) P.-C. Jhang, N.-T. Chuang, S.-L. Wang, Angew. Chem. Int. Ed. 2010, 49, 4200-4204.
[19] 王素蘭, 科儀新知, 民國九十四年二月 第二十六卷第四期.
[20] B. Apex, Madison, WI 2008.
[21] G. Sheldrick, Bruker-Axs: Madison, WI 1998.
[22] I. Brown, D. Altermatt, Acta Crystallogr. B 1985, 41, 244-247.
[23] L. Spek, Acta Crystallogr. 1990, A46, 34.
第二章
[1] a) M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, Nature 1988, 331, 698-699; b) C. B. Khouw, M. E. Davis, ACS Sym. Ser. 1993, 517, 206-221; c) M. E. Davis, Nature 2002, 417, 813-821; d) L. Liu, Y. Li, H. Wei, M. Dong, J. Wang, A. M. Z. Slawin, J. Li, J. Dong, R. E. Morris, Angew. Chem. Int. Ed. 2009, 48, 2206-2209; e) M. E. Davis, Nature 2002, 417, 813.
[2] a) R. E. Morris, P. S. Wheatley, Angew. Chem. Int. Ed. 2008, 47, 4966-4981; b) Q.-G. Zhai, X. Bu, X. Zhao, D.-S. Li, P. Feng, Acc. Chem. Res. 2017, 50, 407-417.
[3] a) A. C. McKinlay, R. E. Morris, P. Horcajada, G. Férey, R. Gref, P. Couvreur, C. Serre, Angew. Chem. Int. Ed. 2010, 49, 6260-6266; b) D. G. Fatouros, D. Douroumis, V. Nikolakis, S. Ntais, A. M. Moschovi, V. Trivedi, B. Khima, M. Roldo, H. Nazar, P. A. Cox, J. Mater. Chem. 2011, 21, 7789-7794.
[4] a) Y. Cui, Y. Yue, G. Qian, B. Chen, Chem. Rev. 2011, 112, 1126-1162; b) L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2011, 112, 1105-1125.
[5] M. Kampa, E. Castanas, Environ. Pollut. 2008, 151, 362-367.
[6] B. Szulczyński, J. Gębicki, Environments 2017, 4, 21.
[7] S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695.
[8] a) C. Serre, F. Millange, C. Thouvenot, M. Nogues, G. Marsolier, D. Louër, G. Férey, J. Am. Chem.Soc. 2002, 124, 13519-13526; b) L. Chen, J. P. Mowat, D. Fairen-Jimenez, C. A. Morrison, S. P. Thompson, P. A. Wright, T. Düren, J. Am. Chem.Soc. 2013, 135, 15763-15773.
[9] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276.
[10] M. Allendorf, C. Bauer, R. Bhakta, R. Houk, Chem. Soc. Rev. 2009, 38, 1330-1352.
[11] a) Y. Li, S. Zhang, D. Song, Angew. Chem. 2013, 125, 738-741; b) Z. Hu, B. J. Deibert, J. Li, Chem. Soc. Rev. 2014, 43, 5815-5840; c) M. Zhang, G. Feng, Z. Song, Y.-P. Zhou, H.-Y. Chao, D. Yuan, T. T. Y. Tan, Z. Guo, Z. Hu, B. Z. Tang, B. Liu, D. Zhao, J. Am. Chem.Soc. 2014, 136, 7241-7244; d) W. P. Lustig, S. Mukherjee, N. D. Rudd, A. V. Desai, J. Li, S. K. Ghosh, Chem. Soc. Rev. 2017, 46, 3242-3285.
[12] F.-Y. Yi, Y. Wang, J.-P. Li, D. Wu, Y.-Q. Lan, Z.-M. Sun, Mater. Horiz. 2015, 2, 245-251.
[13] a) Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem.Soc. 2004, 126, 1320-1321; b) S. H. Huang, C. H. Lin, W. C. Wu, S. L. Wang, Angew. Chem. 2009, 121, 6240-6243; c) H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang, Y. H. Lee, C. H. Lin, K. H. Lii, X. Bu, S. L. Wang, Science 2013, 339, 811-813; d) H. L. Huang, W. Y. Huang, S. L. Wang, Chem. Eur. J. 2017, 23, 4962-4966.
[14] P. Ramaswamy, N. N. Hegde, R. Prabhu, V. Vidya, A. Datta, S. Natarajan, Inorg. Chem. 2009, 48, 11697-11711.
[15] a) C.-H. Huang, L.-H. Huang, K.-H. Lii, Inorg. Chem. 2001, 40, 2625-2627; b) L.-I. Hung, S.-L. Wang, H.-M. Kao, K.-H. Lii, Inorg. Chem. 2002, 41, 3929-3934; c) Z. Shi, G. Li, D. Zhang, J. Hua, S. Feng, Inorg. Chem. 2003, 42, 2357-2361; d) W.-K. Chang, R.-K. Chiang, Y.-C. Jiang, S. L. Wang, S.-F. Lee, K.-H. Lii, Inorg. Chem. 2004, 43, 2564-2568.
[16] K.-H. Lii, Y.-F. Huang, Inorg. Chem. 1999, 38, 1348-1350.
[17] a) Y.-C. Liao, C.-H. Lin, S.-L. Wang, J. Am. Chem.Soc. 2005, 127, 9986-9987; b) S. H. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 5319-5322; c) H.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu, S. L. Wang, Science 2013, 339, 811-813; d) M.-J. Sie, C.-H. Lin, S.-L. Wang, J. Am. Chem.Soc. 2016, 138, 6719-6722.
[18] a) S. Subramanian, M. J. Zaworotko, Angew. Chem. Int. Ed. 1995, 34, 2127-2129; b) S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas, M. J. Zaworotko, J. Am. Chem.Soc. 2012, 134, 3663-3666.
[19] a) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Science 2003, 300, 1127-1129; b) H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018-1023.
[20] P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, Nature 2013, 495, 80.
[21] N. T. T. Nguyen, H. Furukawa, F. Gándara, H. T. Nguyen, K. E. Cordova, O. M. Yaghi, Angew. Chem. 2014, 126, 10821-10824.
[22] A. R. Millward, O. M. Yaghi, J. Am. Chem.Soc. 2005, 127, 17998-17999.
[23] D. Saha, Z. Bao, F. Jia, S. Deng, Environ. Sci. Technol. 2010, 44, 1820-1826.
[24] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724-781.
[25] T.-H. Bae, M. R. Hudson, J. A. Mason, W. L. Queen, J. J. Dutton, K. Sumida, K. J. Micklash, S. S. Kaye, C. M. Brown, J. R. Long, Energy Environ Sci. 2013, 6, 128-138.
[26] a) N. M. Tukur, S. Al-Khattaf, Energy & Fuels 2007, 21, 2499-2508; b) J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477-1504.
[27] a) Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya, Z.-i. Yoshida, J. Am. Chem.Soc. 2008, 130, 13867-13869; b) Y. Hong, J. W. Y. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361-5388.
[28] Y. Zhou, B. Yan, Chem. Commun. 2016, 52, 2265-2268.
[29] R.-W. Huang, Y.-S. Wei, X.-Y. Dong, X.-H. Wu, C.-X. Du, S.-Q. Zang, T. C. Mak, Nat. Chem. 2017, 9, 689.
[30] Y. Takashima, V. M. Martínez, S. Furukawa, M. Kondo, S. Shimomura, H. Uehara, M. Nakahama, K. Sugimoto, S. Kitagawa, Nat. Commun. 2011, 2, 168.
[31] S. L. Jackson, A. Rananaware, C. Rix, S. V. Bhosale, K. Latham, Cryst. Growth Des. 2016, 16, 3067-3071.
[32] X. Zhao, Y. Li, Z. Chang, L. Chen, X.-H. Bu, Dalton Trans. 2016, 45, 14888-14892.
[33] Y. Guo, X. Feng, T. Han, S. Wang, Z. Lin, Y. Dong, B. Wang, J. Am. Chem.Soc. 2014, 136, 15485-15488.
[34] C. Zhan, S. Ou, C. Zou, M. Zhao, C.-D. Wu, Anal. Chem. 2014, 86, 6648-6653.
[35] Y. Li, S. Zhang, D. Song, Angew. Chem. Int. Ed. 2013, 52, 710-713.
[36] X.-L. Hu, C. Qin, L. Zhao, F.-H. Liu, K.-Z. Shao, Z.-M. Su, RSC Advances 2015, 5, 49606-49613.
[37] Y.-S. Xue, Y. He, L. Zhou, F.-J. Chen, Y. Xu, H.-B. Du, X.-Z. You, B. Chen, J. Mater. Chem. A 2013, 1, 4525-4530.
[38] S. Pramanik, Z. Hu, X. Zhang, C. Zheng, S. Kelly, J. Li, Chem. Eur. J. 2013, 19, 15964-15971.
[39] T. Lee, Z. X. Liu, H. L. Lee, Cryst. Growth Des. 2011, 11, 4146-4154.
[40] D. Banerjee, Z. Hu, S. Pramanik, X. Zhang, H. Wang, J. Li, CrystEngComm 2013, 15, 9745-9750.
[41] S. Pramanik, C. Zheng, X. Zhang, T. J. Emge, J. Li, J. Am. Chem.Soc. 2011, 133, 4153-4155.
[42] Y.-N. Gong, Y.-R. Xie, D.-C. Zhong, Z.-Y. Du, T.-B. Lu, Cryst. Growth Des. 2015, 15, 3119-3122.
[43] Z. Hu, K. Tan, W. P. Lustig, H. Wang, Y. Zhao, C. Zheng, D. Banerjee, T. J. Emge, Y. J. Chabal, J. Li, Chem. Sci. 2014, 5, 4873-4877.
[44] Z. Hu, S. Pramanik, K. Tan, C. Zheng, W. Liu, X. Zhang, Y. J. Chabal, J. Li, Cryst. Growth Des. 2013, 13, 4204-4207.
[45] M. J. Dong, M. Zhao, S. Ou, C. Zou, C. D. Wu, Angew. Chem. Int. Ed. 2014, 53, 1575-1579.
[46] a) K. K. Tanabe, S. M. Cohen, Chem. Soc. Rev. 2011, 40, 498-519; b) J. Jiang, Y. Zhao, O. M. Yaghi, J. Am. Chem.Soc. 2016, 138, 3255-3265.
[47] a) I.-H. Park, R. Medishetty, J.-Y. Kim, S. S. Lee, J. J. Vittal, Angew. Chem. Int. Ed. 2014, 53, 5591-5595; b) T. Junkers, Eur. Polym. J. 2015, 62, 273-280; c) I.-H. Park, R. Medishetty, H.-H. Lee, C. E. Mulijanto, H. S. Quah, S. S. Lee, J. J. Vittal, Angew. Chem. Int. Ed. 2015, 54, 7313-7317.
[48] a) G. S. Papaefstathiou, Z. Zhong, L. Geng, L. R. MacGillivray, J. Am. Chem.Soc. 2004, 126, 9158-9159; b) M. L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata, S. Kitagawa, J. Am. Chem.Soc. 2016, 138, 3022-3030.
第三章
[1] M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowdert, Nature 1988, 331, 698-699.
[2] a) M. Estermann, L. B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature 1991, 352, 320-323; b) P. Feng, X. Bu, G. D. Stucky, Nature 1997, 388, 735-741; c) G.-Y. Yang, S. C. Sevov, J. Am. Chem.Soc. 1999, 121, 8389-8390; d) C. H. Lin, S. L. Wang, K. H. Lii, J. Am. Chem.Soc. 2001, 123, 4649-4650; e) H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang, Y. H. Lee, C. H. Lin, K. H. Lii, X. Bu, S. L. Wang, Science 2013, 339, 811-813.
[3] a) X. Zou, T. Conradsson, M. Klingstedt, M. S. Dadachov, M. O'Keeffe, Nature 2005, 437, 716-719; b) J. Sun, C. Bonneau, A. Cantin, A. Corma, M. J. Diaz-Cabanas, M. Moliner, D. Zhang, M. Li, X. Zou, Nature 2009, 458, 1154-1157.
[4] a) H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276; b) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, O. M. Yaghi, Science 2003, 300, 1127-1129; c) H. Deng, S. Grunder, K. E. Cordova, C. Valente, H. Furukawa, M. Hmadeh, F. Gándara, A. C. Whalley, Z. Liu, S. Asahina, H. Kazumori, M. O’Keeffe, O. Terasaki, J. F. Stoddart, O. M. Yaghi, Science 2012, 336, 1018-1023.
[5] Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem.Soc. 2004, 126, 1320-1321.
[6] S. H. Huang, C. H. Lin, W. C. Wu, S. L. Wang, Angew. Chem. 2009, 121, 6240-6243.
[7] P. Ramaswamy, N. N. Hegde, R. Prabhu, V. Vidya, A. Datta, S. Natarajan, Inorg. Chem. 2009, 48, 11697-11711.
[8] K. F. Fischer, V. Schramm, Adv. Chem. Ser. 1971, 101, 508-516.
[9] a) F. Trigueiro, D. Monteiro, F. Zotin, E. F. Sousa-Aguiar, J. Alloys Compd. 2002, 344, 337-341; b) R. Arletti, C. Giacobbe, S. Quartieri, G. Vezzalini, Minerals 2017, 7, 18.
[10] a) Z. Shi, G. Li, D. Zhang, J. Hua, S. Feng, Inorg. Chem. 2003, 42, 2357-2361; b) Z.-E. Lin, J. Zhang, S.-T. Zheng, G.-Y. Yang, Microporous Mesoporous Mater. 2004, 68, 65-70.
[11] Z. E. Lin, J. Zhang, S. T. Zheng, G. Y. Yang, Z. Anorg. Allg. Chem. 2005, 631, 155-159.
[12] J. Jiang, J. Yu, A. Corma, Angew. Chem. Int. Ed. 2010, 49, 3120-3145.
[13] a) K.-F. Hsu, S.-L. Wang, Inorg. Chem. 2000, 39, 1773-1778; b) H.-M. Yuan, J.-S. Chen, G.-S. Zhu, J.-Y. Li, J.-H. Yu, G.-D. Yang, R.-R. Xu, Inorg. Chem. 2000, 39, 1476-1479; c) C.-H. Lin, S.-L. Wang, Inorg. Chem. 2001, 40, 2918-2921.
[14] a) Z. Bircsak, W. T. Harrison, Acta Crystallogr. Sect. C 1998, 54, 1197-1200; b) X.-M. Zhang, M.-L. Tong, S.-H. Feng, X.-M. Chen, J. Chem. Soc., Dalton Trans. 2001, 2069-2070; c) R. C. Finn, J. Zubieta, J. Chem. Soc., Dalton Trans. 2002, 856-861.
[15] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, J. R. Long, Chem. Rev. 2012, 112, 724-781.
[16] a) A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2010, 43, 58-67; b) S.-T. Zheng, J. T. Bu, Y. Li, T. Wu, F. Zuo, P. Feng, X. Bu, J. Am. Chem.Soc. 2010, 132, 17062-17064; c) N. T. Nguyen, H. Furukawa, F. Gándara, H. T. Nguyen, K. E. Cordova, O. M. Yaghi, Angew. Chem. 2014, 126, 10821-10824; d) N. T. T. Nguyen, T. N. H. Lo, J. Kim, H. T. D. Nguyen, T. B. Le, K. E. Cordova, H. Furukawa, Inorg. Chem. 2016, 55, 6201-6207.
[17] S.-T. Zheng, J. T. Bu, Y. Li, T. Wu, F. Zuo, P. Feng, X. Bu, J. Am. Chem.Soc. 2010, 132, 17062-17064.
[18] P. Rallapalli, K. Prasanth, D. Patil, R. S. Somani, R. Jasra, H. Bajaj, J. Porous Mater. 2011, 18, 205-210.
[19] Z. Zhao, Z. Li, Y. S. Lin, Ind. Eng. Chem. Res. 2009, 48, 10015-10020.
[20] T.-H. Bae, M. R. Hudson, J. A. Mason, W. L. Queen, J. J. Dutton, K. Sumida, K. J. Micklash, S. S. Kaye, C. M. Brown, J. R. Long, Energy Environ Sci. 2013, 6, 128-138.
[21] A. M. Plonka, D. Banerjee, W. R. Woerner, Z. Zhang, N. Nijem, Y. J. Chabal, J. Li, J. B. Parise, Angew. Chem. Int. Ed. 2013, 52, 1692-1695.
[22] Q.-G. Zhai, X. Bu, C. Mao, X. Zhao, P. Feng, J. Am. Chem.Soc. 2016, 138, 2524-2527.
[23] a) I. J. Kang, N. A. Khan, E. Haque, S. H. Jhung, Chem. Eur. J. 2011, 17, 6437-6442; b) P. Van Der Voort, K. Leus, Y.-Y. Liu, M. Vandichel, V. Van Speybroeck, M. Waroquier, S. Biswas, New J. Chem. 2014, 38, 1853-1867.
[24] a) K. Barthelet, J. Marrot, D. Riou, G. Férey, Angew. Chem. Int. Ed. 2002, 41, 281-284; b) A. O. z. r. Yazaydın, R. Q. Snurr, T.-H. Park, K. Koh, J. Liu, M. D. LeVan, A. I. Benin, P. Jakubczak, M. Lanuza, D. B. Galloway, J. Am. Chem.Soc. 2009, 131, 18198-18199.
[25] A. Bhunia, S. Dey, J. M. Moreno, U. Diaz, P. Concepcion, K. Van Hecke, C. Janiak, P. Van Der Voort, Chem. Commun. 2016, 52, 1401-1404.
[26] G. Wang, K. Leus, S. Couck, P. Tack, H. Depauw, Y.-Y. Liu, L. Vincze, J. F. Denayer, P. Van Der Voort, Dalton Trans. 2016, 45, 9485-9491.
[27] S. Biswas, S. Couck, M. Grzywa, J. F. Denayer, D. Volkmer, P. Van Der Voort, Eur. J. Inorg. Chem. 2012, 2012, 2481-2486.
[28] a) J.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena, H.-C. Zhou, Nat. Commun. 2013, 4, 1538; b) L. C. Lin, J. Kim, X. Kong, E. Scott, T. M. McDonald, J. R. Long, J. A. Reimer, B. Smit, Angew. Chem. 2013, 125, 4506-4509.
[29] a) S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, B. Chen, Nat. Commun. 2012, 3, 954; b) Z. Zhang, Z.-Z. Yao, S. Xiang, B. Chen, Energy Environ Sci. 2014, 7, 2868-2899.