簡易檢索 / 詳目顯示

研究生: 林怡君
I-Chun Lin
論文名稱: 應用蒙地卡羅方法模擬放射手術之小照野劑量分佈
Small field simulation of radiosurgery cones using BEAMnrc Monte Carlo codes
指導教授: 董傳中
Chuan-Jong Tung
李宗其
Chung-Chi Lee
趙自強
Tsi-Chian Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 蒙地卡羅小照野
外文關鍵詞: Monte Carlo, radiosurgery cones
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了提升放射治療科學的進步,本研究應用蒙地卡羅方法來模擬小照野劑量分佈,以發展出一套針對小動物的高解析度光子照射系統,使日後在研究新的照射技術或輻射生物效應時,可以對小動物作微小體積照射,最終並能設計及評估1 mm圓錐型準直儀的實用性。研究中使用2006版BEAM code來模擬Varian Clinac 2100C/D直線加速器,加上BrainLab公司的30、14、6、4及2 mm圓錐型準直儀所產生的小照野劑量分佈,並且利用四種偵檢器(XV-film、small volume ion chamber、PTW PinPoint chamber和PTW Diamond detector)驗證模擬的準確性。研究結果顯示,XV-film與PTW Diamond是較適合測量小照野劑量分佈的工具,模擬百分深度劑量分佈與實驗結果在深度1.5及20 cm之間的劑量差異約1%左右,80%照野寬度內之模擬剖面劑量分佈也與測量結果只有1.5%的劑量差異,兩側20%及80%相同劑量處的距離差異在0.45 mm以內,所以最佳化的模擬參數所得蒙地卡羅模擬結果與實驗結果是吻合的。此外,不論是模擬或實驗,都發現在深度2 cm後之劑量是隨深度呈指數衰減。最後,由模擬所預估的1 mm圓錐型準直儀之照野輸出因子在水下8 cm深為0.185,在1.5 cm深為0.230,亦表示使用此圓錐型準直儀來照射動物的可行性。


    PURPOSES:
    This study tries to develop a Monte Carlo (MC) based dose simulation system for small conical collimators (ex. 2 mm) where results of clinical measurements are far from certain due to finite detector sizes and lack of lateral electronic equilibrium. This system also has the potential to be modified for small animal irradiation studies.
    MATERIALS AND METHODS:
    BEAM06 Monte Carlo codes were adopted for this study. Accuracy of our simulation was verified with a small volume ion chamber, a PTW PinPoint chamber, a PTW Diamond detector (in vertical and horizontal directions) and XV-films for cone fields (BrainLab 30, 14, 6, 4 and 2 mm on Varian Clinac 2100C/D). A virtual 1 mm cone which may play a role in irradiation for small animals was also created for MC simulation. Simulation results of PDDs, profiles and output factors at 1.5 and 8 cm depths were compared to measurements. All the simulations/measurements were set for SAD setting (SAD=100 cm). Disagreements between simulation and measurement were evaluated through dose differences of PDD between 1.5 and 20 cm depths, dose differences within 80% field width and distance to agreement (DTA) at lateral positions of 20% and 80% doses of the penumbra region.
    RESULTS:
    Dose differences for the PDDs and profiles within 80% field width obtained from Monte Carlo simulation show the best agreement to measurements with films and a PTW Diamond detector positioned horizontally (< 1.5%). Disagreement of DTA in all cases was less than 0.45 mm. MC calculation predicts a output factor of 0.185 for 1 mm cone at 8 cm depth and 0.230 at 1.5 cm depth.
    CONCLUSIONS:
    This work has demonstrated that a small animal irradiation system can be reliably modeled with BEAM/EGS4 Monte Carlo codes. Based on MC simulation and measurement results, films and the PTW Diamond detector positioned horizontally are more suitable for small field dosimetry.

    摘要 目錄 圖目錄 表目錄 第一章 緒論 1.1 前言 1.2 研究目的 第二章 理論基礎 2.1蒙地卡羅劑量模擬系統 2.2BEAMnrc程式簡介 2.2.1 動物用光子照射系統機頭之模擬 2.2.2 誤差縮減技術 2.2.3 電子分割方法 2.2.4 光子分割參數與模擬效率 2.3DOSXYZnrc程式簡介 2.3.1 光子分割參數與模擬效率 第三章 實驗材料與方法 3.1 動物用光子照射系統 3.2 小照野的劑量分佈量測 3.3 小照野輸出劑量因子 第四章 結果與討論 4.1模擬參數對小照野劑量分佈之影響 4.1.1 水假體體素分割大小 4.1.2 入射電子徑向分佈模式 4.1.3 不同電子截止能量 4.2動物照射系統之小照野劑量驗證結果 4.2.1模擬百分劑深度劑量、模擬剖面劑量分佈與實驗結果之比較 4.2.2照野輸出劑量因子 4.3修正後3.1毫米圓錐型準直儀之模擬 4.4圓錐型準直儀有無發散設計的影響 4.51毫米圓錐型準直儀劑量特性模擬 4.5.1 圓錐型準直儀之材質影響 4.5.2 動物假體劑量模擬 第五章 結論 參考文獻

    1. Daniel A. Low, Milos Vicic, Sasa Mutic, Perry W. Grigsby, Joseph O. Deasy, and Andrew Hope, “microRT: A Conformal Small Animal Irradiator,” IEEE ISBI (2004).

    2. F Verhaegeny, I J Dasz and H Palmansy, "Monte Carlo dosimetry study of a 6 MV stereotactic radiosurgery unit," Phys. Med. Biol. 43, 2755-2768 (1998).

    3. X. Ron Zhu and J. Joseph Allen, “Total scatter factors and tissue maximum ratios for small radiosurgery fields: Comparison of diode detectors, a parallel-plate ion chamber,and radiographic film,” Med. Phys. 27 (3), 472-477 (2000).

    4. C. Fan, W. G. Devanna, L. B. Leybovich, R. G. Kurup, B. J. Hopkins, E. Melian, D. Anderson, and G. P. Glasgow, ‘‘Dosimetry of very-small 5–10 mm and small 12.5–40 mm diameter cones and dose verificationfor radiosurgery with 6 MV x-ray beams,’’ Stereotactic and Functional Neurosurgery 67, 183–197 (1997).

    5. P. Francescon, S. Cora, C. Cavedon, P. Scalchi, S. Reccanello, and F.Colombo, ‘‘Use of a new type radiochromic film, a new parallel-plate micro-chamber, MOSFETS, and TLD 800 microcubes in the dosimetry of small beams,’’ Med. Phys. 25, 503–511 (1998).

    6. C. F. Serago, P. V. Houdek, G. H. Hartmann, ‘‘Tissue maximum ratios ~and other parameters! of small circular 4, 6, 10, 15, and 24 MV x-ray beams for radiosurgery,’’ Phys.Med. Biol. 37, 1943–1956 (1992).

    7. R. K. Rice, J. L. Hansen, G. K. Svensson, and R. L. Siddon, ‘‘Measurement of dose distributions in small beams of 6 MV x rays,’’ Phys. Med. Biol. 32, 1087–1099 (1987).

    8. Mariaperucha, “Investigation of radiosurgical beam profiles using Monte Carlo method,” Medical Dosimetry, 28 (1), 1–6 (2003).

    9. 林堉烽, 以蒙地卡羅方法驗證強度調控放射治療的劑量分布, 國立清華大學碩士論文 (2004).

    10. R Nelson, H Hirayama and D.W.O. Rogers, “The EGS4 Code System ,” Stanford
    Linear Accelerator Center Report SLAC-265 (Stanford, CA: SLAC). (1985).

    11. I. Kawrakow, ”Accurate condensed history Monte Carlo simulation of electron transport,” I. EGSnrc, the new EGS4 version. Med. Phys. 27, 485-498 (2000).

    12. I. Kawrakow and D.W.O. Rogers,” The EGSnrc Code System: Monte Carlo simulation of electron and photon transport,” NRC Report PIRS-710 (4th printing) (2003).

    13. D.W.O. Rogers, B. Walters, I. Kawrakow , “BEAMnrc Users Manual, ”National Research Council Report PIRS-0509(A) (Ottawa ,Canada: NRCC) (2005).

    14. J. R. Treurniet, B. R. Walters, I. Kawrakow and D. W. O. Rogers BEAMnrc,” DOSXYZnrc and BEAMDP GUI User's Manual,” NRC Report PIRS 0623 (2005).

    15. B. Walters, I. Kawrakow and D.W.O. Rogers,” DOSXYZnrc Users Manual,” National Research Council of Canada, Ottawa K1A 0R6, January 6, 2005.

    16. D. W. O. Rogers, B. A. Faddegon, G. X. Ding, C.-M. Ma, J. Wei, and T. R. Mackie, “BEAM: A Monte Carlo code to simulate radiotherapy treatment units,” Med. Phys. 22, 503 – 524 (1995).

    17. ICRU,” Stopping Powers for Electron and Positrons,” ICRU Report 37, ICRU, Washington D.C. (1984).

    18. 財團法人中華民國輻射防護協會. 第二十六章 醫用加速器構造及安全設備. 游離輻射防護彙萃. 修訂第四版, 395-400 (2003).

    19. I. Kawrakow, D.W.O.R., B.R.B.W.,” Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting,” Physics Dept, Carleton University, Ottawa K1S 5B6 (2004).

    20. P W Hoban, M Heydarian, W A Beckham and A H Beddoe, ”Dose rate dependence of a PTW diamond detector in the dosimetry of a 6 MV photon beam,” Phys. Med. Biol. 39, 1219-1229 (1994).

    21. Andrea Fidanzio, Luigi Azario, Roberto Miceli, Aniello Russo, and Angelo Piermattei, “ PTW-diamond detector: Dose rate and particle type dependence,” Med. Phys. 27, 2589-2593 (2000).

    22. M. Bucciolini, ”Diamond detector versus silicon diode and ion chamber in photon beams of different energy and field size,” Med. Phys. 30 (8), 2149-2154 (2003).

    23. Philip James Muench, Ali S., ”Photon energy dependence of the sensitivity of radiochromic film and comparison with silver halide film and LiF TLDs used for brachytherapy dosimetry,” Med. Phys. 18 (4), 769-775 (1991).

    24. F S´anchez-Doblado et al., “Ionization chamber dosimetry of small photon fields: a Monte Carlo study on stopping-power ratios for radiosurgery and IMRT beams,” Phys. Med. Biol. 48, 2081–2099 (2003).

    25. J. L. Robar and B. G. Clark, ”The use of radiographic film for linear accelerator stereotactic radiosurgical dosimetry,” Med. Phys. 26 (10), 2144-2150 (1999).

    26. Åsa Palm, Assen S. Kirov, and Thomas LoSasso, ”Predicting energy response of radiographic film in a 6 MV x-ray beam using Monte Carlo calculated fluence spectra and absorbed dose,” Med. Phys. 31 (12), 3168-3178 (2004).

    27. M. Stasi,B. Baiotto, G. Barboni, and G. Scielzo, ” The behavior of several microionization chambers in small intensity modulated radiotherapy fields’” Med. Phys. 31 (10), 2793-2795 (2004).

    28. Daniel A. Low, William B. Harms, Sasa Mutic, and James A. Purdy, ”A technique for the quantitative evaluation of dose distributions,” Med. Phys. 25,. 625-661 (1998).

    29. 彭宇民, 蒙地卡羅模擬瓦里安21EX醫用直線加速器6MV光子射束的最佳初始電子參數, 國立清華大學碩士論文 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE