研究生: |
傅虹毓 Fu, Hung-Yu |
---|---|
論文名稱: |
比較擴散張量成像和擴散峰度成像鑑別神經組織特徵的能力: 正常大鼠及高血壓大鼠腦部的研究 Comparison of diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI) in neural tissue characterization: A rodent brain study on Sprague-Dawley (SD) and Spontaneously hypertensive rats (SHR) |
指導教授: |
王福年
Wang, Fu-Nien |
口試委員: |
彭旭霞
Peng, Hsu-Hsia 劉益瑞 Liu, Yi-Jui |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 擴散峰度成像 、擴散張量成像 、組織異質性 |
外文關鍵詞: | DKI, DTI, tissue heterogeneity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
擴散張量成像(DTI)在臨床上已經被廣泛使用於診斷神經元損傷及預測神經系統疾病。但DTI無法使用於觀察非高斯擴散的情形,因此擴散峰度成像(DKI)被提出。DKI利用「峰度」的概念來量化非高斯擴散並反映擴散受到阻礙的程度,並且這個方法在未來幾年可能會應用於臨床。本研究的目的是比較DTI和DKI 描述神經組織特徵的能力。我們使用常用的DTI、使用6個b值的DKI和DTI三種方法獲得的參數,並將正常大鼠(SD)和高血壓大鼠(SHR)分組並進行三個模型之間分辨能力的比較。由結果發現DTI 計算得到的Dapp、擴散參數、擴散參數的範圍及變異都比DKI小。在解釋結果時,同時考慮擴散和峰度提供的資訊能使DKI分辨組織的能力提高。在分辨SD及SHR兩種不同品系的大鼠時,DKI能分辨出最多不同種類的組織,是分辨能力最佳的方法,而在分辨不同年齡的SHR時,6b DTI及DKI則是三者中分辨能力較佳的方法。此外,我們觀察大鼠內的組織異質性,並發現這個指標能用來分辨病理及正常組織,可能是有潛力的分辨方法。
Diffusion tensor imaging (DTI) has been used to identify neuronal injury and predict outcome of neurological disorders clinically. Yet this method is unable to investigate non-gaussian diffusion behavior. Diffusion Kurtosis Imaging (DKI) is proposed to probe non-gaussian diffusion property by measuring kurtosis, which reveals the degree of diffusion restriction, and might apply in clinic in the coming year. The aim of this study is to compare the abilities of neural tissue characterization between DTI and DKI models. We studied parameters derived from conventional DTI, DKI with 6 different b values, and DTI fitted with same dataset as DKI. We probed parameters and compared three approaches utilizing mean among rats and tissue heterogeneity with groups of Sprague-Dawley (SD) rats and Spontaneously hypertensive rats (SHR). Results show that DTI-derived Dapp, diffusivities, as well as range and variation of parameters are smaller than those derived from DKI. DKI demonstrates better ability when interpreting results with diffusivities and kurtoses. When it comes to telling apart SHR in different age, 6b DTI showed most significant difference among three approaches, closely followed by DKI, and the 2b DTI has the worst performance among three of them. Moreover, tissue heterogeneity of diffusivities may have potential to tell pathologic tissue from normal one.
1. Wu, E.X. and M.M. Cheung, MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed, 2010. 23(7): p. 836-48.
2. Lu, H., et al., Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed, 2006. 19(2): p. 236-47.
3. Veenith, T.V., et al., Inter subject variability and reproducibility of diffusion tensor imaging within and between different imaging sessions. PLoS One, 2013. 8(6): p. e65941.
4. Cheung, M.M., et al., Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study. Neuroimage, 2009. 45(2): p. 386-92.
5. Niendorf, T., et al., Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med, 1996. 36(6): p. 847-57.
6. Mulkern, R.V., et al., Multi-component apparent diffusion coefficients in human brain. NMR Biomed, 1999. 12(1): p. 51-62.
7. Callaghan, P.T., Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press, Oxford England, 1991.
8. Liu, C., et al., Characterizing non-Gaussian diffusion by using generalized diffusion tensors. Magn Reson Med, 2004. 51(5): p. 924-37.
9. Ozarslan, E. and T.H. Mareci, Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn Reson Med, 2003. 50(5): p. 955-65.
10. Le Bihan, D., et al., Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988. 168(2): p. 497-505.
11. Hui, E.S., et al., Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis. Neuroimage, 2008. 42(1): p. 122-34.
12. Jensen, J.H., et al., Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005. 53(6): p. 1432-40.
13. Newcombe, V.F., et al., Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury. Brain, 2011. 134(Pt 3): p. 759-68.
14. Kraus, M.F., et al., White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 2007. 130(Pt 10): p. 2508-19.
15. Hannoun, S., et al., Diffusion tensor-MRI evidence for extra-axonal neuronal degeneration in caudate and thalamic nuclei of patients with multiple sclerosis. AJNR Am J Neuroradiol, 2012. 33(7): p. 1363-8.
16. Senda, J., et al., MRI mean diffusivity detects widespread brain degeneration in multiple sclerosis. J Neurol Sci, 2012. 319(1-2): p. 105-10.
17. Bozzali, M., et al., White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry, 2002. 72(6): p. 742-6.
18. Assaf, Y. and O. Pasternak, Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci, 2008. 34(1): p. 51-61.
19. Andre, E.D., et al., Influence of noise correction on intra- and inter-subject variability of quantitative metrics in diffusion kurtosis imaging. PLoS One, 2014. 9(4): p. e94531.
20. Hui, E.S., et al., Stroke assessment with diffusional kurtosis imaging. Stroke, 2012. 43(11): p. 2968-73.
21. Van Cauter, S., et al., Gliomas: diffusion kurtosis MR imaging in grading. Radiology, 2012. 263(2): p. 492-501.
22. Gao, Y., et al., Diffusion abnormalities in temporal lobes of children with temporal lobe epilepsy: a preliminary diffusional kurtosis imaging study and comparison with diffusion tensor imaging. NMR Biomed, 2012. 25(12): p. 1369-77.
23. Blockx, I., et al., Microstructural changes observed with DKI in a transgenic Huntington rat model: evidence for abnormal neurodevelopment. Neuroimage, 2012. 59(2): p. 957-67.
24. Helpern, J.A., et al., Preliminary evidence of altered gray and white matter microstructural development in the frontal lobe of adolescents with attention-deficit hyperactivity disorder: a diffusional kurtosis imaging study. J Magn Reson Imaging, 2011. 33(1): p. 17-23.
25. Kamagata, K., et al., A preliminary diffusional kurtosis imaging study of Parkinson disease: comparison with conventional diffusion tensor imaging. Neuroradiology, 2014. 56(3): p. 251-8.
26. Marrale, M., et al., Physics, Techniques and Review of Neuroradiological Applications of Diffusion Kurtosis Imaging (DKI). Clin Neuroradiol, 2016. 26(4): p. 391-403.
27. Rosenkrantz, A.B., et al., Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging, 2015. 42(5): p. 1190-202.
28. Basser, P.J., J. Mattiello, and D. LeBihan, Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B, 1994. 103(3): p. 247-54.
29. Helpern, J.A., V. Adisetiyo, and M.F. Falangola, Preliminary Evidence of Altered Gray and White Matter Microstructural Development in the Frontal Lobe of Adolescents With Attention-Deficit Hyperactivity Disorder: A Diffusional Kurtosis Imaging Study. J. MAGN. RESON. IMAGING, 2011. 33(1): p. 17-23.
30. Pastura, G., et al., Exploratory analysis of diffusion tensor imaging in children with attention deficit hyperactivity disorder: evidence of abnormal white matter structure. Atten Defic Hyperact Disord, 2016. 8(2): p. 65-71.
31. Li, Y., et al., Cerebral angiography, blood flow and vascular reactivity in progressive hypertension. Neuroimage, 2015. 111: p. 329-37.
32. Paxinos, G., Watson, C., The Rat Brain in Stereotaxic Coordinates—
The New Coronal Set, 5th edition. Elsevier Academic Press, San Diego., 2005.
33. Sabbatini, M., et al., The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study. Neuroscience, 2000. 100(2): p. 251-8.
34. Coleman TF and L. YY, An interior trust region approach for nonlinear minimization subject to bounds. Siam J Optimiz, 1996. 6(2): p. 418-45.
35. López-Gil, et al., DWI and complex brain network analysis predicts vascular cognitive impairment in spontaneous hypertensive rats undergoing executive function tests. Frontiers in Aging Neuroscience, 2014. 6.
36. Sabbatini, M., et al., The hippocampus in spontaneously hypertensive rats: an animal model of vascular dementia? Mech Ageing Dev, 2002. 123(5): p. 547-59.
37. Yan, X., et al., Evaluation of optimized b-value sampling schemas for diffusion kurtosis imaging with an application to stroke patient data. Comput Med Imaging Graph, 2013. 37(4): p. 272-80.