簡易檢索 / 詳目顯示

研究生: 黃午軒
Huang, Wu Hsuan
論文名稱: 利用塞劑型自我組裝氣泡系統釋放硫化氫進行發炎性腸症之治療
A Self-assembling Bubble System that Can Produce H2S to Treat Inflammatory Bowel Diseases via Suppository Delivery
指導教授: 宋信文
Sung, Hsing Wen
口試委員: 甘霈
劉培毅
李孟如
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 36
中文關鍵詞: 發炎性腸症硫化氫產氣系統肛門塞劑
外文關鍵詞: IBD, DATS, H2S, foaming system, suppository delivery
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 發炎性腸道疾病 (Inflammatory bowel disease, IBD) 是一種成因複雜的自體免疫疾病,主要症狀有嘔吐、腹痛、腹瀉以及直腸出血等。目前 IBD的常規治療有手術以及藥物治療,然而前者往往會在切口處復發炎症;後者由於IBD病灶區域廣泛,所以難以確保藥物在炎症處可有效釋放。為此,本研究利用肛門塞劑給藥的方式,設計了一個產氣系統,藉由在腸道產生CO2氣體來對給藥環境進行擾動,因而形成藥物氣泡 (drug bubble),可以有效地增大藥物與腸壁的接觸面積 (contact area),以及增加藥物在腸道內的分散能力 (diffusion ability)。近年來硫化氫 (hydrogen sulfide, H2S) 氣體在生物體內作為信息傳遞物質的作用機制逐漸被解開,文獻指出H2S具有抑制發炎基因表達的能力,曾被用於胃炎、心肌炎、關節炎等炎症治療。在本研究中,我們選用可以產生H2S的疏水有機硫化物diallyl trisulfide (DATS) 作為減緩IBD發炎反應的治療藥物,並利用上述之膠囊產氣系統來達到有效分散DATS至腸道病灶部位之效果。在 in vitro 實驗中,我們分析了本系統產氣過程和氣泡結構,並發現氣泡可以增加DATS在腸道環境中的分散,且產氣系統可以提高其釋放藥物的細胞利用效率。在 in vivo 實驗中,我們建構了大鼠IBD模型,並發現相較於未治療及使用無產氣效果膠囊之組別,使用本膠囊產氣系統可以顯著地改善 IBD病徵,從腸道切片分析也可觀察到較良好的組織復原情形,對促發炎因子也有更好的抑制效果。此結果證實本系統能夠有效分散DATS並提高其細胞利用率,有助於緩和IBD發炎反應及達到良好的恢復結果。


    Inflammatory bowel disease (IBD) is a group of inflammatory syndromes for the gastro-intestinal tract with the symptoms of abdominal pain, vomiting, diarrhea and rectal bleeding. Surgical and medical treatments are the principle therapies for IBD. However, inflammation often recurs at the resection site by surgical treatment. Furthermore, refers to the inflammatory area may occur in any position of the intestinal system, it’s difficult to release the drug at the specific targets. To deal with this problem, we had designed a foaming system via suppository delivery. The produced CO2 gas gave rise to create drug bubbles to extent the contact area between drug and bowel wall, and lead to increase drug diffusion in the intestinal tract. In recent studies, H2S was reported to mitigate inflammation by down-regulation of some pre-inflammatory genes, and was used in treating several kinds of inflammation. In this research, the hydrophobic H2S precursor diallyl trisulfide (DATS) was applied with the foaming system for IBD treatment. In the in vitro studies, it shows that the better DATS diffusion, the data also showed better cell utilization ability for the foaming group, compared to the w/o foaming group that cause a better anti-inflammation effects. In the in vivo studies of rat IBD model, it shows that the better recovery was observed for the foaming group than the no treatment and w/o foaming group by both the results of disease index record and histological H&E stain, along with a better down-regulation of some pre-inflammatory cytokines. These results validate our foaming system is benefit for DATS diffusion and cell utilization, which helps to anti-inflammatory and leads to good recovery of IBD.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 IV 第一章 緒論 1 1-1. 炎症性腸病 (IBD) 簡介 1 1-2.IBD藥物療法之限制 4 1-3.硫化氫簡介及其抗發炎之應用 4 1-4. DATS作為H2S的前驅藥物 (precursor drug) 7 1-5.CO2 產泡機制簡介 7 1-6.研究動機與目的 8 1-7.實驗設計流程圖 10 第二章 實驗材料與方法 11 2-1.實驗所用藥品 11 2-2.實驗所用儀器 11 2-3.實驗所用細胞及動物 11 2-4.DATS bubbles製成及表徵 11 2-5.實驗細胞的培養及藥物吸收實驗 13 2-6.膠囊的設計與製作 15 2-7.動物模型的建立及IBD的治療 16 第三章 實驗結果與討論 20 3-1.DATS bubbles的基礎物性分析 20 3.2. 細胞實驗部分 22 3.3. 動物實驗 25 第四章 結論 32 Reference 33

    [1] Baumgart D C, Carding S R. Inflammatory bowel disease: cause and immunobiology. The Lancet, 2007, 369(9573): 1627-1640.
    [2] Xavier R J, Podolsky D K. Unravelling the pathogenesis of inflammatory bowel disease. Nature, 2007, 448(7152): 427-434.
    [3] Kilham J P, Lerner R C, Griffiths S P. Crohn's and Colitis Foundation of America. Journal of Consumer Health On the Internet, 2014, 18(4): 377-384.
    [4] Mukhopadhya I, Hansen R, El-Omar E M, et al. IBD—what role do Proteobacteria play?. Nature Reviews Gastroenterology and Hepatology, 2012, 9(4): 219-230.
    [5] Podolsky D K. Inflammatory bowel disease. New England Journal of Medicine, 1991, 325(13): 928-937.
    [6] O’Toole A, Korzenik J. Environmental triggers for IBD. Current gastroenterology reports, 2014, 16(7): 1-6.
    [7] Parkes G C, Whelan K, Lindsay J O. Smoking in inflammatory bowel disease: Impact on disease course and insights into the aetiology of its effect. Journal of Crohn's and Colitis, 2014, 8(8): 717-725.
    [8] Ananthakrishnan A N. Epidemiology and risk factors for IBD. Nature Reviews Gastroenterology & Hepatology, 2015.
    [9] Karatzas P S, Gazouli M, Safioleas M, et al. DNA methylation changes in inflammatory bowel disease. Annals of gastroenterology: quarterly publication of the Hellenic Society of Gastroenterology, 2014, 27(2): 125.
    [10] Maloy K J, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature, 2011, 474(7351): 298-306.
    [11] Bamias G, Pizarro T T, Cominelli F. Pathway-based approaches to the treatment of inflammatory bowel disease. Translational Research, 2015.
    [12] Uhlig H H. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut, 2013, 62(12): 1795-1805.
    [13] Kotlarz D, Beier R, Murugan D, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology, 2012, 143(2): 347-355.
    [14] Peterson C T, Sharma V, Elmén L, et al. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clinical & Experimental Immunology, 2015, 179(3): 363-377.
    [15] Hansen J J, Sartor R B. Therapeutic manipulation of the microbiome in IBD: current results and future approaches. Current treatment options in gastroenterology, 2015, 13(1): 105-120.
    [16] Smits L P, Bouter K E C, de Vos W M, et al. Therapeutic potential of fecal microbiota transplantation. Gastroenterology, 2013, 145(5): 946-953.
    [17] Anderson J L, Edney R J, Whelan K. Systematic review: faecal microbiota transplantation in the management of inflammatory bowel disease. Alimentary pharmacology & therapeutics, 2012, 36(6): 503-516.
    [18] Cammarota G, Ianiro G, Cianci R, et al. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: Potential for therapy. Pharmacology & therapeutics, 2015, 149: 191-212.
    [19] Torres J, Danese S, Colombel J F. New therapeutic avenues in ulcerative colitis: thinking out of the box. Gut, 2013, 62(11): 1642-1652.
    [20] Torres J, Danese S, Colombel J F. New therapeutic avenues in ulcerative colitis: thinking out of the box. Gut, 2013, 62(11): 1642-1652.
    [21] Stefanelli T, Malesci A, Sarah A, et al. Anti-adhesion molecule therapies in inflammatory bowel disease: touch and go. Autoimmunity reviews, 2008, 7(5): 364-369.
    [22] Baumgart D C, Sandborn W J. Inflammatory bowel disease: clinical aspects and established and evolving therapies. The Lancet, 2007, 369(9573): 1641-1657.
    [23] Polhemus D J, Calvert J W, Butler J, et al. The cardioprotective actions of hydrogen sulfide in acute myocardial infarction and heart failure. Scientifica, 2014, 2014.
    [24] Gemici B, Elsheikh W, Feitosa K B, et al. H2S -releasing drugs: Anti-inflammatory, cytoprotective and chemopreventative potential. Nitric Oxide, 2015, 46: 25-31.
    [25] Fiorucci S, Antonelli E, Distrutti E, et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology, 2005, 129(4): 1210-1224.
    [26] Esechie, Aimalohi, et al. "Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation."Clinical Science 115 (2008): 91-97.
    [27] Schwarz U I, Gramatte T, Krappweis J, et al. P-glycoprotein inhibitor erythromycin increases oral bioavailability of talinolol in humans. International journal of clinical pharmacology and therapeutics, 2000, 38(4): 161-167.
    [28] Zhao, Weimin, et al. "The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener." The EMBO journal 20.21 (2001): 6008-6016.
    [29] Benavides, Gloria A., et al. "Hydrogen sulfide mediates the vasoactivity of garlic." Proceedings of the National Academy of Sciences 104.46 (2007): 17977-17982.
    [30] Chuang E Y, Lin K J, Lin P Y, et al. Self-assembling bubble carriers for oral protein delivery. Biomaterials, 2015, 64: 115-124.
    [31] Harper J F, Brooker G. Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. Journal of cyclic nucleotide research, 1974, 1(4): 207-218.
    [32] Ke C J, Su T Y, Chen H L, et al. Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angewandte Chemie, 2011, 123(35): 8236-8239.
    [33] Deane S M, Robb F T, Woods D R. Production and activation of an SDS-resistant alkaline serine exoprotease of Vibrio alginolyticus. Journal of general microbiology, 1987, 133(2): 391-398.
    [34] Hsu L W, Ho Y C, Chuang E Y, et al. Effects of pH on molecular mechanisms of chitosan–integrin interactions and resulting tight-junction disruptions. Biomaterials, 2013, 34(3): 784-793.
    [35] Ivanov A I, Nusrat A, Parkos C A. Endocytosis of epithelial apical junctional proteins by a clathrin-mediated pathway into a unique storage compartment. Molecular biology of the cell, 2004, 15(1): 176-188.
    [36] Brown R C, Davis T P. Calcium Modulation of Adherens and Tight Junction Function A Potential Mechanism for Blood-Brain Barrier Disruption After Stroke. Stroke, 2002, 33(6): 1706-1711.
    [37] Trier S, Linderoth L, Bjerregaard S, et al. Acylation of Glucagon-Like Peptide-2: Interaction with Lipid Membranes and In Vitro Intestinal Permeability. 2014.
    [38] Benavides G A, Squadrito G L, Mills R W, et al. Hydrogen sulfide mediates the vasoactivity of garlic. Proceedings of the National Academy of Sciences, 2007, 104(46): 17977-17982.
    [39] Li, Ling, et al. "GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat." Free Radical Biology and Medicine 47.1 (2009): 103-113.
    [40] McCarthy J, O'Neill M J, Bourre L, et al. Gene silencing of TNF-alpha in a murine model of acute colitis using a modified cyclodextrin delivery system[J]. Journal of Controlled Release, 2013, 168(1): 28-34.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE