簡易檢索 / 詳目顯示

研究生: 王奕夫
Wang, Yi Fu
論文名稱: 飲食與生理代謝物質對於系統性發炎反應之影響
The Effect of Dietary Metabolites and Physiological Metabolites on Systemic Inflammation
指導教授: 郭呈欽
Kuo, Cheng Chin
徐瑞洲
Hsu, Jui Chou
口試委員: 林秀芳
Yet, Shaw Fang
劉俊揚
Liou, Jun Yang
許育瑞
Hsu, Yu Juei
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 87
中文關鍵詞: 脂多醣TLR4敗血症甘油二酯5-甲氧基色胺酸
外文關鍵詞: LPS, TLR4, sepsis, diacylglycerol, 5-methoxytryptophan
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 系統性發炎在病理上為關鍵性的症狀,其與多重器官衰竭和敗血症等多種人類疾病高度相關,但臨床上對於系統性發炎仍缺乏明確的治療策略。生理與飲食上的代謝物具有調控發炎與發炎相關疾病之功能,我們認為生理與飲食代謝物可能可控制發炎反應並抵抗系統性發炎疾病。甘油二酯(Diacylglycerol, DAG)為飲食中常見的脂肪酸之一,其具有三種不同立體化學結構,分別為sn-1,2-DAG、sn-2,3-DAG與sn-1,3-DAG。儘管文獻指出飲食中的DAG可調控慢性發炎相關疾病,但其參與的調控機制目前仍未被詳細研究。本篇論文中,我們發現sn-1,2-DAG可抑制脂多醣(Lipopolysaccharide, LPS)在RAW 264.7細胞與腹腔巨噬細胞(peritoneal macrophage)中誘導的COX-2表現與細胞素(cytokine)生成。而在小鼠模式實驗中,sn-1,2-DAG亦可抑制LPS在小鼠中造成的細胞素風暴(cytokine storm)與趨化因子(chemokine)生成,進而保護小鼠免於受到LPS產生的系統性發炎反應而死亡。此外,sn-1,2-DAG可藉由抑制LPS所誘導的Akt與p38活化,進而調控NF-κB,以減少COX-2與發炎相關細胞素的生成。因此,我們認為sn-1,2-DAG可調控LPS誘導的發炎反應能力,並具控制系統性發炎反應之潛力。除了飲食,生理的代謝產物也可能具有調控系統性發炎反應的功能,內皮組織對於調節發炎反應恆定、控制系統性發炎反應與啟動發炎反應上扮演重要角色,我們猜測內皮細胞可能藉由釋放可溶性小分子來調控發炎反應的恆定。實驗結果指出,內皮細胞的條件培養基 (endothelial cells conditioned medium)可抑制LPS在巨噬細胞所誘導的COX-2與細胞素生成。利用代謝質譜分析後發現一具有潛力的分子,5-甲氧基色胺酸(5-methoxytryptophan, 5-MTP)。值得注意的是,LPS所誘發的發炎反應會降低內皮細胞、小鼠、以及敗血症病患體內的5-MTP生成,而在利用腹腔注射給予小鼠5-MTP後,會提高小鼠血液中的5-MTP濃度以產生保護作用,減輕LPS或CLP手術所誘發之敗血症狀,並降低小鼠的死亡率。因此,我們認為內皮細胞會藉由釋放5-MTP來控制發炎反應,以維持免疫反應的恆定性。總結而言,本篇論文證實外生性的sn-1,2-DAG與內皮細胞所產生的5-MTP可用於調控、對抗過度發炎反應,除可作為營養補給以預防系統性發炎反應外,亦具有治療系統性發炎相關疾病的潛力。


    Systemic inflammation has emerged as a key pathophysiological process that induces multi-organ injury and causes many diseases such as sepsis. Unfortunately, specific clinical treatment of controlling systemic inflammation is still lacking. Physiological metabolites and dietary metabolites are thought to play an important role in modulating inflammation and inflammatory diseases. We postulated that physiological and dietary metabolites might modulate inflammatory responses and protect against systemic inflammation. Diacylglycerols (or "diglycerides", DAGs) are natural components of vegetable oils and are extensively used in food oil as an emulsifier. They exist in three stereochemical forms, sn-1,2- and sn-2,3-diacylglycerols and sn-1,3-diacylglycerols. Despite substantial evidence supports the role of exogenous DAG in modulating chronic inflammation and chronic diseases, the potential mechanisms of it in metabolic inflammation modulation remains to be investigated. We find that sn-1,2-DAGs pretreatment suppresses LPS/TLR4-induced cyclooxygenase-2 (COX-2) expression and cytokines production in macrophages, but has no significant effect on other TLRs. Furthermore, sn-1,2-DAGs treatment improves the survival rate in LPS-induced lethal endotoxemic mice by suppressing proinflammatory cytokines and chemokines production. sn-1,2-diacylglycerols alleviate systemic inflammation by inhibiting LPS-induced p38 MAPK- and PI3K/AKT- mediated NF-κB activation in macrophages. Collectively, exogenous sn-1,2-diacylglycerol protects mice against LPS-induced lethal endotoxemia by suppressing TLR4-driven inflammatory responses. As dietary metabolites, endogenous physiological metabolite may have the ability to control systemic inflammation. Endothelium is critical in maintaining inflammatory homeostasis, controlling systemic inflammation, and progression of inflammatory diseases. We postulated that endothelium produces and releases endogenous soluble factors to modulate inflammatory responses and protect against systemic inflammation. The results indicate endothelial cells conditioned medium suppressed LPS-induced proinflammatory cytokines and COX-2 expression in macrophages. Using metabolic approach, we identified that the potential effective molecule is 5-methoxytryptophan (5-MTP). Furthermore, endothelial cells-derived 5-MTP suppressed LPS-induced inflammatory response in macrophages and endotoxemic lung tissues. Notably, LPS depressed 5-MTP production in endothelial cells and reduced serum 5-MTP level in the endotoxemic mice and patient with sepsis. Intraperitoneal injection of 5-MTP increased the serum level of 5-MTP and rescued mice from LPS- and CLP-mediated lethal systemic inflammation. These results suggest that endothelial cells produce 5-MTP to control the homeostasis of the inflammatory response. In summary, this study demonstrated that exogenous sn-1,2-diacylglycerol and endothelium-derived 5-MTP are capable of defending against excessive systemic inflammatory responses and may be useful as a dietary health supplements for prevention or therapy of systemic inflammatory diseases.

    Abstract I 摘要 III 誌謝 IV Chapter 1. Introduction 1 1.1 Inflammation in immune response 1 1.2 Toll-like receptors are critical in inflammatory response 1 1.3 The functions of inflammatory mediators in inflammatory response 3 1.4 Dietary fatty acids and inflammatory response 4 1.5 Endothelium in inflammatory response 5 1.6 Metabolites as the indicators of physiological status 6 1.7 Sepsis and inflammation 7 1.8 Rationale 9 Chapter 2. Materials and Methods 10 Chapter 3 18 Chapter 3.1 Exogenous sn-1,2-diacylglycerols suppress LPS/TLR4-mediated inflammatory response 18 3.1.1 Objective 18 3.1.2 Result 19 3.1.3 Discussion 24 3.1.4 Figures 27 Chapter 3.2 Novel tryptophan metabolite 5-methoxytryptophan regulates systemic inflammation 35 3.2.2 Objective 35 3.2.2 Results 36 3.3.3 Discussion 46 3.2.4 Table 49 3.2.5 Figures 50 Reference 76 Publications 87

    1. Medzhitov, R. (2008) Origin and physiological roles of inflammation. Nature 454, 428-435
    2. Vincent, J. L., Opal, S. M., Marshall, J. C., and Tracey, K. J. (2013) Sepsis definitions: time for change. Lancet 381, 774-775
    3. Russell, J. A. (2006) Management of sepsis. N Engl J Med 355, 1699-1713
    4. Libby, P., Ridker, P. M., and Maseri, A. (2002) Inflammation and atherosclerosis. Circulation 105, 1135-1143
    5. Libby, P. (2012) Inflammation in atherosclerosis. Arterioscler Thromb Vasc Biol 32, 2045-2051
    6. Coussens, L. M., and Werb, Z. (2002) Inflammation and cancer. Nature 420, 860-867
    7. Angus, D. C., and van der Poll, T. (2013) Severe sepsis and septic shock. N Engl J Med 369, 2063
    8. Akira, S., Takeda, K., and Kaisho, T. (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nature immunology 2, 675-680
    9. Akira, S. (2001) Toll-like receptors and innate immunity. Advances in immunology 78, 1-56
    10. Takeuchi, O., and Akira, S. (2010) Pattern recognition receptors and inflammation. Cell 140, 805-820
    11. Kawai, T., and Akira, S. (2009) The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 21, 317-337
    12. Takeuchi, O., Kawai, T., Muhlradt, P. F., Morr, M., Radolf, J. D., Zychlinsky, A., Takeda, K., and Akira, S. (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. International immunology 13, 933-940
    13. Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L., and Akira, S. (2002) Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. Journal of immunology 169, 10-14
    14. Jin, M. S., Kim, S. E., Heo, J. Y., Lee, M. E., Kim, H. M., Paik, S. G., Lee, H., and Lee, J. O. (2007) Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell 130, 1071-1082
    15. Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L., and Aderem, A. (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proceedings of the National Academy of Sciences of the United States of America 97, 13766-13771
    16. Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M., and Aderem, A. (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099-1103
    17. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A. (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738
    18. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745
    19. Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S. (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nature immunology 3, 196-200
    20. O'Neill, L. A., Golenbock, D., and Bowie, A. G. (2013) The history of Toll-like receptors - redefining innate immunity. Nature reviews. Immunology 13, 453-460
    21. Fukata, M., Chen, A., Klepper, A., Krishnareddy, S., Vamadevan, A. S., Thomas, L. S., Xu, R., Inoue, H., Arditi, M., Dannenberg, A. J., and Abreu, M. T. (2006) Cox-2 is regulated by Toll-like receptor-4 (TLR4) signaling: Role in proliferation and apoptosis in the intestine. Gastroenterology 131, 862-877
    22. Akira, S., and Takeda, K. (2004) Toll-like receptor signalling. Nature reviews. Immunology 4, 499-511
    23. O'Neill, L. A., Bryant, C. E., and Doyle, S. L. (2009) Therapeutic targeting of Toll-like receptors for infectious and inflammatory diseases and cancer. Pharmacol Rev 61, 177-197
    24. Bennett-Guerrero, E., Grocott, H. P., Levy, J. H., Stierer, K. A., Hogue, C. W., Cheung, A. T., Newman, M. F., Carter, A. A., Rossignol, D. P., and Collard, C. D. (2007) A phase II, double-blind, placebo-controlled, ascending-dose study of Eritoran (E5564), a lipid A antagonist, in patients undergoing cardiac surgery with cardiopulmonary bypass. Anesth Analg 104, 378-383
    25. Kalil, A. C., LaRosa, S. P., Gogate, J., Lynn, M., Opal, S. M., and Eritoran Sepsis Study, G. (2011) Influence of severity of illness on the effects of eritoran tetrasodium (E5564) and on other therapies for severe sepsis. Shock 36, 327-331
    26. Guiducci, C., Gong, M., Xu, Z., Gill, M., Chaussabel, D., Meeker, T., Chan, J. H., Wright, T., Punaro, M., Bolland, S., Soumelis, V., Banchereau, J., Coffman, R. L., Pascual, V., and Barrat, F. J. (2010) TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus. Nature 465, 937-941
    27. Arslan, F., Houtgraaf, J. H., Keogh, B., Kazemi, K., de Jong, R., McCormack, W. J., O'Neill, L. A., McGuirk, P., Timmers, L., Smeets, M. B., Akeroyd, L., Reilly, M., Pasterkamp, G., and de Kleijn, D. P. (2012) Treatment with OPN-305, a humanized anti-Toll-Like receptor-2 antibody, reduces myocardial ischemia/reperfusion injury in pigs. Circ Cardiovasc Interv 5, 279-287
    28. Farrar, C. A., Keogh, B., McCormack, W., O'Shaughnessy, A., Parker, A., Reilly, M., and Sacks, S. H. (2012) Inhibition of TLR2 promotes graft function in a murine model of renal transplant ischemia-reperfusion injury. FASEB J 26, 799-807
    29. Dubois, R. N., Abramson, S. B., Crofford, L., Gupta, R. A., Simon, L. S., Van De Putte, L. B., and Lipsky, P. E. (1998) Cyclooxygenase in biology and disease. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 12, 1063-1073
    30. Rajakariar, R., Yaqoob, M. M., and Gilroy, D. W. (2006) COX-2 in inflammation and resolution. Molecular interventions 6, 199-207
    31. Lee, J. Y., Sohn, K. H., Rhee, S. H., and Hwang, D. (2001) Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4. The Journal of biological chemistry 276, 16683-16689
    32. Rees, D., Miles, E. A., Banerjee, T., Wells, S. J., Roynette, C. E., Wahle, K. W., and Calder, P. C. (2006) Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: a comparison of young and older men. Am J Clin Nutr 83, 331-342
    33. Faber, J., Berkhout, M., Vos, A. P., Sijben, J. W., Calder, P. C., Garssen, J., and van Helvoort, A. (2011) Supplementation with a fish oil-enriched, high-protein medical food leads to rapid incorporation of EPA into white blood cells and modulates immune responses within one week in healthy men and women. The Journal of nutrition 141, 964-970
    34. Yaqoob, P., Pala, H. S., Cortina-Borja, M., Newsholme, E. A., and Calder, P. C. (2000) Encapsulated fish oil enriched in alpha-tocopherol alters plasma phospholipid and mononuclear cell fatty acid compositions but not mononuclear cell functions. Eur J Clin Invest 30, 260-274
    35. Cines, D. B., Pollak, E. S., Buck, C. A., Loscalzo, J., Zimmerman, G. A., McEver, R. P., Pober, J. S., Wick, T. M., Konkle, B. A., Schwartz, B. S., Barnathan, E. S., McCrae, K. R., Hug, B. A., Schmidt, A. M., and Stern, D. M. (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527-3561
    36. Sandow, S. L., and Hill, C. E. (2000) Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 86, 341-346
    37. Pober, J. S., and Sessa, W. C. (2007) Evolving functions of endothelial cells in inflammation. Nature reviews. Immunology 7, 803-815
    38. Zhang, J., Defelice, A. F., Hanig, J. P., and Colatsky, T. (2010) Biomarkers of endothelial cell activation serve as potential surrogate markers for drug-induced vascular injury. Toxicol Pathol 38, 856-871
    39. Pober, J. S., and Cotran, R. S. (1990) The role of endothelial cells in inflammation. Transplantation 50, 537-544
    40. Hijiya, N., Miyake, K., Akashi, S., Matsuura, K., Higuchi, Y., and Yamamoto, S. (2002) Possible involvement of toll-like receptor 4 in endothelial cell activation of larger vessels in response to lipopolysaccharide. Pathobiology 70, 18-25
    41. Taylor, C. T., and Colgan, S. P. (2007) Hypoxia and gastrointestinal disease. J Mol Med (Berl) 85, 1295-1300
    42. Borregaard, N., and Herlin, T. (1982) Energy metabolism of human neutrophils during phagocytosis. J Clin Invest 70, 550-557
    43. van Raam, B. J., Sluiter, W., de Wit, E., Roos, D., Verhoeven, A. J., and Kuijpers, T. W. (2008) Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation. PLoS One 3, e2013
    44. Mikkelsen, M. E., Miltiades, A. N., Gaieski, D. F., Goyal, M., Fuchs, B. D., Shah, C. V., Bellamy, S. L., and Christie, J. D. (2009) Serum lactate is associated with mortality in severe sepsis independent of organ failure and shock. Crit Care Med 37, 1670-1677
    45. Funk, C. D. (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875
    46. Csuka, M. E., and McCarty, D. J. (1989) Aspirin and the treatment of rheumatoid arthritis. Rheum Dis Clin North Am 15, 439-454
    47. Lewis, H. D., Jr., Davis, J. W., Archibald, D. G., Steinke, W. E., Smitherman, T. C., Doherty, J. E., 3rd, Schnaper, H. W., LeWinter, M. M., Linares, E., Pouget, J. M., Sabharwal, S. C., Chesler, E., and DeMots, H. (1983) Protective effects of aspirin against acute myocardial infarction and death in men with unstable angina. Results of a Veterans Administration Cooperative Study. The New England journal of medicine 309, 396-403
    48. Wu, K. K. (2003) Aspirin and other cyclooxygenase inhibitors: new therapeutic insights. Semin Vasc Med 3, 107-112
    49. Martin, G. S., Mannino, D. M., Eaton, S., and Moss, M. (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348, 1546-1554
    50. Angus, D. C., Linde-Zwirble, W. T., Lidicker, J., Clermont, G., Carcillo, J., and Pinsky, M. R. (2001) Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29, 1303-1310
    51. Lagu, T., Rothberg, M. B., Shieh, M. S., Pekow, P. S., Steingrub, J. S., and Lindenauer, P. K. (2012) Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med 40, 754-761
    52. Shen, H. N., Lu, C. L., and Yang, H. H. (2010) Epidemiologic trend of severe sepsis in Taiwan from 1997 through 2006. Chest 138, 298-304
    53. Adhikari, N. K., Fowler, R. A., Bhagwanjee, S., and Rubenfeld, G. D. (2010) Critical care and the global burden of critical illness in adults. Lancet 376, 1339-1346
    54. Hotchkiss, R. S., and Karl, I. E. (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348, 138-150
    55. Pinsky, M. R., Vincent, J. L., Deviere, J., Alegre, M., Kahn, R. J., and Dupont, E. (1993) Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 103, 565-575
    56. Damas, P., Canivet, J. L., de Groote, D., Vrindts, Y., Albert, A., Franchimont, P., and Lamy, M. (1997) Sepsis and serum cytokine concentrations. Critical care medicine 25, 405-412
    57. Modlin, R. L., Brightbill, H. D., and Godowski, P. J. (1999) The toll of innate immunity on microbial pathogens. The New England journal of medicine 340, 1834-1835
    58. Aird, W. C. (2003) The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101, 3765-3777
    59. Vallet, B. (2003) Bench-to-bedside review: endothelial cell dysfunction in severe sepsis: a role in organ dysfunction? Critical care 7, 130-138
    60. Meakins, J. L., Pietsch, J. B., Bubenick, O., Kelly, R., Rode, H., Gordon, J., and MacLean, L. D. (1977) Delayed hypersensitivity: indicator of acquired failure of host defenses in sepsis and trauma. Ann Surg 186, 241-250
    61. Oberholzer, A., Oberholzer, C., and Moldawer, L. L. (2001) Sepsis syndromes: understanding the role of innate and acquired immunity. Shock 16, 83-96
    62. Crouser, E. D., Julian, M. W., Weinstein, D. M., Fahy, R. J., and Bauer, J. A. (2000) Endotoxin-induced ileal mucosal injury and nitric oxide dysregulation are temporally dissociated. Am J Respir Crit Care Med 161, 1705-1712
    63. Ayala, A., Herdon, C. D., Lehman, D. L., DeMaso, C. M., Ayala, C. A., and Chaudry, I. H. (1995) The induction of accelerated thymic programmed cell death during polymicrobial sepsis: control by corticosteroids but not tumor necrosis factor. Shock 3, 259-267
    64. Gogos, C. A., Drosou, E., Bassaris, H. P., and Skoutelis, A. (2000) Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. The Journal of infectious diseases 181, 176-180
    65. Wang, Y., Liu, H., McKenzie, G., Witting, P. K., Stasch, J. P., Hahn, M., Changsirivathanathamrong, D., Wu, B. J., Ball, H. J., Thomas, S. R., Kapoor, V., Celermajer, D. S., Mellor, A. L., Keaney, J. F., Jr., Hunt, N. H., and Stocker, R. (2010) Kynurenine is an endothelium-derived relaxing factor produced during inflammation. Nat Med 16, 279-285
    66. Wu, J. Y., and Kuo, C. C. (2012) Pivotal role of ADP-ribosylation factor 6 in Toll-like receptor 9-mediated immune signaling. The Journal of biological chemistry 287, 4323-4334
    67. Wong, S. W., Kwon, M. J., Choi, A. M., Kim, H. P., Nakahira, K., and Hwang, D. H. (2009) Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem 284, 27384-27392
    68. Garzon-Aburbeh, A., Poupaert, J. H., Claesen, M., Dumont, P., and Atassi, G. (1983) 1,3-dipalmitoylglycerol ester of chlorambucil as a lymphotropic, orally administrable antineoplastic agent. J Med Chem 26, 1200-1203
    69. Garzon-Aburbeh, A., Poupaert, J. H., Claesen, M., and Dumont, P. (1986) A lymphotropic prodrug of L-dopa: synthesis, pharmacological properties, and pharmacokinetic behavior of 1,3-dihexadecanoyl-2-[(S)-2-amino-3-(3,4-dihydroxyphenyl)prop anoyl] propane-1,2,3-triol. J Med Chem 29, 687-691
    70. Ota, N., Soga, S., Hase, T., Tokimitsu, I., and Murase, T. (2007) Dietary diacylglycerol induces the regression of atherosclerosis in rabbits. The Journal of nutrition 137, 1194-1199
    71. Yamamoto, K., Takeshita, M., Tokimitsu, I., Watanabe, H., Mizuno, T., Asakawa, H., Tokunaga, K., Tatsumi, T., Okazaki, M., and Yagi, N. (2006) Diacylglycerol oil ingestion in type 2 diabetic patients with hypertriglyceridemia. Nutrition 22, 23-29
    72. Chen, Y., Zhang, J., Moore, S. A., Ballas, Z. K., Portanova, J. P., Krieg, A. M., and Berg, D. J. (2001) CpG DNA induces cyclooxygenase-2 expression and prostaglandin production. International immunology 13, 1013-1020
    73. Kirkby, N. S., Zaiss, A. K., Wright, W. R., Jiao, J., Chan, M. V., Warner, T. D., Herschman, H. R., and Mitchell, J. A. (2013) Differential COX-2 induction by viral and bacterial PAMPs: Consequences for cytokine and interferon responses and implications for anti-viral COX-2 directed therapies. Biochemical and biophysical research communications 438, 249-256
    74. Hotchkiss, R. S., Swanson, P. E., Freeman, B. D., Tinsley, K. W., Cobb, J. P., Matuschak, G. M., Buchman, T. G., and Karl, I. E. (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Critical care medicine 27, 1230-1251
    75. Hotchkiss, R. S., and Nicholson, D. W. (2006) Apoptosis and caspases regulate death and inflammation in sepsis. Nature reviews. Immunology 6, 813-822
    76. Wesche, D. E., Lomas-Neira, J. L., Perl, M., Chung, C. S., and Ayala, A. (2005) Leukocyte apoptosis and its significance in sepsis and shock. Journal of leukocyte biology 78, 325-337
    77. Cuschieri, J., Umanskiy, K., and Solomkin, J. (2004) PKC-zeta is essential for endotoxin-induced macrophage activation. J Surg Res 121, 76-83
    78. Sun, S. C. (2012) The noncanonical NF-kappaB pathway. Immunol Rev 246, 125-140
    79. Diamant, G., and Dikstein, R. (2013) Transcriptional control by NF-kappaB: elongation in focus. Biochim Biophys Acta 1829, 937-945
    80. Gerondakis, S., Fulford, T. S., Messina, N. L., and Grumont, R. J. (2014) NF-kappaB control of T cell development. Nat Immunol 15, 15-25
    81. O'Sullivan, A. W., Wang, J. H., and Redmond, H. P. (2009) NF-kappaB and p38 MAPK inhibition improve survival in endotoxin shock and in a cecal ligation and puncture model of sepsis in combination with antibiotic therapy. J Surg Res 152, 46-53
    82. Dominguez, J. A., Samocha, A. J., Liang, Z., Burd, E. M., Farris, A. B., and Coopersmith, C. M. (2013) Inhibition of IKKbeta in enterocytes exacerbates sepsis-induced intestinal injury and worsens mortality. Crit Care Med 41, e275-285
    83. Seibert, K., and Masferrer, J. L. (1994) Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor 4, 17-23
    84. Chien, H. Y., Lu, C. S., Chuang, K. H., Kao, P. H., and Wu, Y. L. (2015) Attenuation of LPS-induced cyclooxygenase-2 and inducible NO synthase expression by lysophosphatidic acid in macrophages. Innate immunity
    85. Reddy, R. C., Chen, G. H., Tateda, K., Tsai, W. C., Phare, S. M., Mancuso, P., Peters-Golden, M., and Standiford, T. J. (2001) Selective inhibition of COX-2 improves early survival in murine endotoxemia but not in bacterial peritonitis. American journal of physiology. Lung cellular and molecular physiology 281, L537-543
    86. Ejima, K., Layne, M. D., Carvajal, I. M., Kritek, P. A., Baron, R. M., Chen, Y. H., Vom Saal, J., Levy, B. D., Yet, S. F., and Perrella, M. A. (2003) Cyclooxygenase-2-deficient mice are resistant to endotoxin-induced inflammation and death. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 17, 1325-1327
    87. Bernard, G. R., Wheeler, A. P., Russell, J. A., Schein, R., Summer, W. R., Steinberg, K. P., Fulkerson, W. J., Wright, P. E., Christman, B. W., Dupont, W. D., Higgins, S. B., and Swindell, B. B. (1997) The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. The New England journal of medicine 336, 912-918
    88. Memis, D., Karamanlioglu, B., Turan, A., Koyuncu, O., and Pamukcu, Z. (2004) Effects of lornoxicam on the physiology of severe sepsis. Critical care 8, R474-482
    89. Wu, H. P., Chen, C. K., Chung, K., Tseng, J. C., Hua, C. C., Liu, Y. C., Chuang, D. Y., and Yang, C. H. (2009) Serial cytokine levels in patients with severe sepsis. Inflammation research : official journal of the European Histamine Research Society ... [et al.] 58, 385-393
    90. Cohen, J. (2002) The immunopathogenesis of sepsis. Nature 420, 885-891
    91. Jaffer, U., Wade, R. G., and Gourlay, T. (2010) Cytokines in the systemic inflammatory response syndrome: a review. HSR proceedings in intensive care & cardiovascular anesthesia 2, 161-175
    92. Wang, H., and Ma, S. (2008) The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. The American journal of emergency medicine 26, 711-715
    93. Takeda, K., and Akira, S. (2005) Toll-like receptors in innate immunity. International immunology 17, 1-14
    94. Lee, M. M., Schuessler, G. B., and Chien, S. (1988) Time-dependent effects of endotoxin on the ultrastructure of aortic endothelium. Artery 15, 71-89
    95. Wang, P., Wood, T. J., Zhou, M., Ba, Z. F., and Chaudry, I. H. (1996) Inhibition of the biologic activity of tumor necrosis factor maintains vascular endothelial cell function during hyperdynamic sepsis. J Trauma 40, 694-700; discussion 701-691
    96. Opal, S. M. (2000) Phylogenetic and functional relationships between coagulation and the innate immune response. Critical care medicine 28, S77-80
    97. Powell, T. C., Powell, S. L., Allen, B. K., Griffin, R. L., Warnock, D. G., and Wang, H. E. (2014) Association of inflammatory and endothelial cell activation biomarkers with acute kidney injury after sepsis. Springerplus 3, 207
    98. Cheng, H. H., Kuo, C. C., Yan, J. L., Chen, H. L., Lin, W. C., Wang, K. H., Tsai, K. K., Guven, H., Flaberg, E., Szekely, L., Klein, G., and Wu, K. K. (2012) Control of cyclooxygenase-2 expression and tumorigenesis by endogenous 5-methoxytryptophan. Proceedings of the National Academy of Sciences of the United States of America 109, 13231-13236
    99. Taniuchi, K., Furihata, M., Hanazaki, K., Iwasaki, S., Tanaka, K., Shimizu, T., Saito, M., and Saibara, T. (2015) Peroxiredoxin 1 promotes pancreatic cancer cell invasion by modulating p38 MAPK activity. Pancreas 44, 331-340
    100. Kawai, T., and Akira, S. (2006) TLR signaling. Cell Death Differ 13, 816-825
    101. Kaisho, T., and Akira, S. (2006) Toll-like receptor function and signaling. J Allergy Clin Immunol 117, 979-987; quiz 988
    102. Deng, W. G., and Wu, K. K. (2003) Regulation of inducible nitric oxide synthase expression by p300 and p50 acetylation. J Immunol 171, 6581-6588
    103. Sahar, S., Reddy, M. A., Wong, C., Meng, L., Wang, M., and Natarajan, R. (2007) Cooperation of SRC-1 and p300 with NF-kappaB and CREB in angiotensin II-induced IL-6 expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 27, 1528-1534
    104. Cheng, H. H., Wang, K. H., Chu, L. Y., Chang, T. C., Kuo, C. C., and Wu, K. K. (2014) Quiescent and proliferative fibroblasts exhibit differential p300 HAT activation through control of 5-methoxytryptophan production. PLoS One 9, e88507
    105. Doi, K., Leelahavanichkul, A., Yuen, P. S., and Star, R. A. (2009) Animal models of sepsis and sepsis-induced kidney injury. The Journal of clinical investigation 119, 2868-2878
    106. Zanotti-Cavazzoni, S. L., and Goldfarb, R. D. (2009) Animal models of sepsis. Crit Care Clin 25, 703-719, vii-viii
    107. Schneider, T., and Issekutz, A. C. (1996) Quantitation of eosinophil and neutrophil infiltration into rat lung by specific assays for eosinophil peroxidase and myeloperoxidase. Application in a Brown Norway rat model of allergic pulmonary inflammation. J Immunol Methods 198, 1-14
    108. Kasahara, T., Abe, K., Mekada, K., Yoshiki, A., and Kato, T. (2010) Genetic variation of melatonin productivity in laboratory mice under domestication. Proc Natl Acad Sci U S A 107, 6412-6417
    109. An, H., Yu, Y., Zhang, M., Xu, H., Qi, R., Yan, X., Liu, S., Wang, W., Guo, Z., Guo, J., Qin, Z., and Cao, X. (2002) Involvement of ERK, p38 and NF-kappaB signal transduction in regulation of TLR2, TLR4 and TLR9 gene expression induced by lipopolysaccharide in mouse dendritic cells. Immunology 106, 38-45
    110. Deng, W. G., Zhu, Y., and Wu, K. K. (2003) Up-regulation of p300 binding and p50 acetylation in tumor necrosis factor-alpha-induced cyclooxygenase-2 promoter activation. J Biol Chem 278, 4770-4777
    111. Vo, N., and Goodman, R. H. (2001) CREB-binding protein and p300 in transcriptional regulation. J Biol Chem 276, 13505-13508
    112. Alamdari, N., Smith, I. J., Aversa, Z., and Hasselgren, P. O. (2010) Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 299, R509-520

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE