研究生: |
黃婉棣 |
---|---|
論文名稱: |
軟骨組織工程: 軟骨化潛力之間葉幹細胞之篩選 Isolation of mesenchymal stem cells with chondrogenesis potential by collagen gel |
指導教授: | 朱一民 |
口試委員: |
湯學成
姚少凌 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 間葉幹細胞 、篩選 、軟骨化 、組織工程 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
間葉幹細胞為多能性細胞,具有分化成許多種類細胞的能力。目前臨床常見之應用為治療白血病之骨髓幹細胞移植。然而間葉幹細胞至今尚未具有一獨特之細胞標幟,只能利用去除其餘細胞之方法取得間葉幹細胞,由此可知間葉幹細胞非一單純種類之細胞。
而本研究著重於利用自製簡單篩選培養皿來篩選間葉幹細胞,其則分為貼附型及懸浮型兩者,並且將兩種細胞群誘導培養後,於不同時間點分析其基因與蛋白表現。由實驗結果可知兩種細胞群經誘導後,貼附型細胞群在軟骨化基因上具有較佳之表現,並分泌較多之GAG,且其細胞型態與軟骨細胞相似。由此推測此篩選系統可將間葉幹細胞篩選出較易形成軟骨結構之細胞群。
1. Osteocord. Differentiation Capacity of ESCs. [cited 2010 Sep. 28]; Available from: http://www.bonefromblood.org/background/osteogenesis.html.
2. PHYSIOLOGY, A.A. Microscopic section of hyaline cartilage. Available from: http://www.daviddarling.info/encyclopedia/H/hyaline_cartilage.html.
3. Bruce Alberts, D.B., Karen Hopkin, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter, Essential Cell Biology, ed. 4th. 2009.
4. Elisseeff, J. Repairing Knee Joints by Growing New Cartilage Using an Injectable Hydrogel. [cited 2010 Sep. 28]; Available from: http://www.datlof.com/8Axamal/docs/Marketing/jhu/JE/index.htm.
5. ENGINEERING, U.M. Ultrasonic Characterisation of Cartilage. [cited 2010 Sep 28]; Available from: http://www.mecheng.ucl.ac.uk/research/biomedical-engineering/ultrasonics/?project=cartilage
6. Hirota, Y., M. Hakoda, and Y. Wakizaka, Separation characteristics of animal cells using a dielectrophoretic filter. Bioprocess Biosyst Eng, 2010. 33(5): p. 607-12.
7. Hanna, D.M., B.A. Oakley, and G.A. Stryker, Using a system-on-a-chip implantable device to filter circulating infected cells in blood or lymph. IEEE Trans Nanobioscience, 2003. 2(1): p. 6-13.
8. 宋信文, 梁., 建立人類身體工房-組織工程. 科學發展, 2003. 362: p. 7.
9. 徐善慧, 陳., 巧奪天工人類的智慧-組織工程. 科學發展, 2002. 356: p. 7.
10. Friedenstein, A.J., R.K. Chailakhyan, and U.V. Gerasimov, Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 1987. 20(3): p. 263-72.
11. Tuan, R.S., G. Boland, and R. Tuli, Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther, 2003. 5(1): p. 32-45.
12. Conget, P.A. and J.J. Minguell, Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999. 181(1): p. 67-73.
13. Galmiche, J.P. and P.A. Lehur, [Gastro-esophageal reflux. Physiopathology, diagnosis, development, treatment]. Rev Prat, 1993. 43(11): p. 1453-7.
14. Haynesworth, S.E., M.A. Baber, and A.I. Caplan, Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone, 1992. 13(1): p. 69-80.
15. Minguell, J.J., A. Erices, and P. Conget, Mesenchymal stem cells. Exp Biol Med (Maywood), 2001. 226(6): p. 507-20.
16. Johnstone, B., et al., In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res, 1998. 238(1): p. 265-72.
17. Cassiede, P., et al., Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF-beta 1 or PDGF-BB as assayed in vivo and in vitro. J Bone Miner Res, 1996. 11(9): p. 1264-73.
18. Barry, F., et al., Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res, 2001. 268(2): p. 189-200.
19. Mackay, A.M., et al., Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng, 1998. 4(4): p. 415-28.
20. Liu, G., et al., Selection of highly osteogenic and chondrogenic cells from bone marrow stromal cells in biocompatible polymer-coated plates. J Biomed Mater Res A, 2010. 92(4): p. 1273-82.
21. Quarto, R., et al., Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med, 2001. 344(5): p. 385-6.
22. Allay, J.A., et al., LacZ and interleukin-3 expression in vivo after retroviral transduction of marrow-derived human osteogenic mesenchymal progenitors. Hum Gene Ther, 1997. 8(12): p. 1417-27.
23. Deneault, E., et al., A functional screen to identify novel effectors of hematopoietic stem cell activity. Cell, 2009. 137(2): p. 369-79.
24. Kim, H., et al., Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett, 2010. 468(3): p. 190-4.
25. Bonassar, J.M.M.a.L.J., Fabrication and Characterization of PGA/PLA composites for Cartilage Tissue Engineering. Tissue Eng, 1998. 4(4): p. 498.
26. Gray, M.L., et al., Mechanical and physiochemical determinants of the chondrocyte biosynthetic response. J Orthop Res, 1988. 6(6): p. 777-92.
27. Cao, Y., et al., Comparative study of the use of poly(glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed, 1998. 9(5): p. 475-87.
28. Ko, C.S., Wu, C.H., Huang, H.H. ,and Chu, I.M., Genipin Cross-linking of Type II Collagen-chondroitin Sulfate-hyaluronan Scaffold for Articular Cartilage Therapy. Journal of Medical and Biological Engineering, 2007. 27(1): p. 8.
29. Haisch, A., et al., Preparation of a pure autologous biodegradable fibrin matrix for tissue engineering. Med Biol Eng Comput, 2000. 38(6): p. 686-9.
30. Knudson, W., et al., Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum, 2000. 43(5): p. 1165-74.