研究生: |
楊凱翔 Yang, Kai-Shiang |
---|---|
論文名稱: |
密度泛函理論計算探討氮氣活化機制於釕觸媒系統 Density Functional Theory Understanding of Nitrogen Activation Mechanisms by Ru Catalysts |
指導教授: |
陳馨怡
Chen, Hsin-Yi |
口試委員: |
陳仕元
Chen, Shih-Yuan 葉丞豪 Yeh, Chen-Hao 蔡明剛 Tsai, Ming-Kang 張鈞智 Chang, Chun-Chih |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 103 |
中文關鍵詞: | 密度泛函理論 、氮氣活化 、釕 、B5活性位點 、氧化鎂(111) 、金屬-載體相互作用 、氧溢流機制 |
外文關鍵詞: | DFT, Nitrogen activation, Ru, B5 active site, MgO(111), Metal -Support interaction, oxygen spillover |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鑒於現今工業Haber-Bosch氨氣製程所需操作環境嚴峻(高溫450-500 °C及高壓30 MPa),導致能源消耗占比過高及溫室氣體排放量過大。釕(Ru)基觸媒材料在產氨反應中最接近活化能-反應速率火山圖之頂點,亦即為一極有潛力於高活性觸媒,因此本研究之一將針對釕觸媒於製氨反應之主要速率決定步驟 - 氮氣活化進行原子尺度下之密度泛函理論(DFT)計算模擬,欲了解降低氮氣斷鍵活化能之主因,並探討釕觸媒中一特殊反應活性位點B5對活化反應之作用,比較一般表面與活性位點上氮氣活化機制的不同,於此此結果可提供實驗團隊於產氨之方向。此外,基於先前研究發現釕觸媒搭載於氧化鎂(111) ((Ru/MgO(111))之系統可有效解決氨氣製程中解離氫原子毒化觸媒材料表面之問題,本次研究也欲探討此Ru/MgO(111)觸媒於氮氣活化之效應,同時在Ru8觸媒團簇上結合B5活性位點,建構了類B5之Ru8,一來以檢測基載及氧溢流機制對於整體氮氣吸脫附行為的影響,二來測試基載對於團簇形成之活性位點有無效益,進而完善氮氣活化機制之探討及證明強金屬-載體相互作用(SMSI)對於催化反應的貢獻性。此DFT結果發現結合SMSI及類B5活性位點之Ru8MgO(111)觸媒對於氮氣活化有顯著降低N-N斷鍵活化能。
The capital and energy-intensive ammonia synthesis industry by the application of conventional iron-based catalysts prompts the tryout and the selection of ruthenium (Ru). Experiments on the corresponding employment had shown that the higher activity of Ru in the current Haber-Bosch process could be achieved with even milder operation conditions, which is beneficial for the development of minor-scale intermittent-operation-capability hardware units. Therefore, the study of the nitrogen activation, the rate-limiting step of the overall ammonia synthesis, on Ru is of all prominence. The comparison of the activation mechanism between the Ru terrace site and the B5 active site, the specific structure discovered in the synthesis, could give detailed insights into the catalysis, which could be exploited in future catalyst design and composite.
The preliminary data has further shown that the application of Ru catalyst on the MgO(111) system has demonstrated significant impacts on solving hydrogen poisoning, which could inhibit the subsequent synthesis of Ru. The extending study on the nitrogen activation by the system is the other goal of the work for a better understanding of the support and the oxygen spillover effect on the nitrogen sorption and activation behavior, and the investigation of B5-like structure construction on the system could determine the influence of the metal-support interaction on the active site, as well as the activity dependence of active site toward the support.
1. K. H. R. Rouwenhorst, P. M. Krzywda, N. E. Benes, G. Mul and L. Lefferts, Chapter 4 – Ammonia Production Technologies, Techno-Economic Challenges of Green Ammonia as an Energy Vector, 2021, 41—83
2. Jan Willem Erisman, Mark A. Sutton, James Galloway, Zbigniew Klimont and Wilfried Winiwarter, How a century of ammonia synthesis changed the world, Nature Geoscience, 2008, 1, 636—639
3. Timur Kandemir,Manfred E. Schuster, Anatoliy Senyshyn, Malte Behrens, and Robert Schlcgl, The Haber-Bosch Process Revisited: On the Real Structure and Stability of “Ammonia Iron” under working Conditions, Angewandte Chemie International Edition, 2013, 52, 12723—12726
4. Ken-Ichi Aika, Humio Hori, Atsumu Ozaki, Activation of Nitrogen by Alkali Metal Promoted Transition Metal I. Ammonia Synthesis over Ruthenium Promoted by Alkali Metal, Journal of Catalysis, 1972, 27, 3, 424—431
5. Kayato Ooya, Jiang Li, Keiga Fukui, Soshi Iimura, Takuya Nakao, Kiya Ogasawara, Masato Sasase, Hitoshi Abe, Yasuhiro Niwa, Masaaki Kitano, and Hideo Hosono, Ruthenium Catalysts Promoted by Lanthanide Oxyhydrides with High Hydride-Ion Mobility for Low-Temperature Ammonia Synthesis, Advanced Energy Material, 2021, 11, 2003723
6. Michel Che, Nobel Prize in Chemistry 1912 to Sabatier: Organic Chemistry or Catalysis?, Catalysis Today, 2013, 218-219, 162—171
7. Andrew J. Medford, Aleksandra Vojvodic, Jens S. Hummelshøj, Johannes Voss, Frank Abild-Pedersen, Felix Studt, Thomas Bligaard, Anders Nilsson and Jens K. Nørskov, From the Sabatier Principle to a Predictive Theory of Transition-Metal Heterogeneous Catalysis, Journal of Catalysis, 2015, 328, 36—42
8. Ken-Ichi Tanaka and Kenzi Tamaru, A General Rule in Chemisorption of Gases on Metals, Journal of Catalysis, 1963, 2, 5, 366—370
9. Aika Ken-Ichi, Yamaguchi Jutaro, and Ozaki Atsumu, Ammonia Synthesis over Rhodium, Iridium and Platinum Promoted by Potassium, Chemistry Letters, 1973, 2, No.2
10. R. P. Eischens and J. Jacknow, “Infrared Study of Nitrogen Chemisorbed on Nickel“, Proc. 3rd Intern. Congress on Catalysis, North-Holland, Amsterdam, 1965, 627-643
11. Wang, H. P., and John T. Yates Jr. "Infrared spectroscopic study of molecular nitrogen chemisorption on rhodium surfaces.“ The Journal of Physical Chemistry,1984, 88, 5, 852-856
12. S. Wagener. Adsorption Measurements at Very Low Pressures. II. J. Phys. Chem., 1957, 61, 267
13. T.W. Hickmott, G. Ehrlich. Struture -Sensitive Chemisorption: The Mechanism of Desorption from Tungsten. J. Phys. Chem. Solids, 5, 1958, 47
14. R. Van Hardeveld and A. Van Montfoort. "The influence of crystallite size on the adsorption of molecular nitrogen on nickel, palladium and platinum: An infrared and electron-microscopic study." Surface Science 4.4 ,1965, 396-430
15. Tom W. van Deelen, Carlos Hernandez Mejia, and Krijn P. de Jong. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nature Catalysis, 2019, 2, 955-970
16. Simson Wu, Kai-Yu Tseng, Ryuichi Kato, Tai-Sing Wu, Alexander Large, Yung-Kang Peng, Weikai Xiang, Huihuang Fang, Jiaying Mo, Ian Wilkinson, Yun-Liang Soo, Georg Held, Kazu Suenaga, Tong Li, Hsin-Yi Tiffany Chen,* and Shik Chi Edman Tsang. Rapid Interchangeable Hydrogen, Hydride, and Proton Species at the Interface of Transition Metal Atom on Oxide Surface. Journal of American Chemical Society, 2021, 143, 24, 9105-9112
17. S. J. Tauster, S. C. Fung, and R. L. Garten, Strong Metal-Support Interactions. Group 8 Noble Metals Supported on TiO2, Journal of the American Chemical Society, 1978, 100, 1,
18. Eiji Nakamachi, Yasutomo Uetsuji, Hiroyuki Kuramae, Kazuyoshi Tsuchiya, Hwisim Hwang. Process Crystallographic Simulation for Biocompatible Piezoelectric Material Design and Generation. Archives of Computational Methods in Engineering, 2013, 20, 155-183
19. Matthias Ernzerhof and Gustavo E. Scuseria. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. Journal of Chemical Physiscs, 1999, 110, No. 11
20. D. l. Chadi and Marvin L. Cohen. Special Points in the Brillouin Zone. Physical Review B, 1973, 8, No. 12
21. Hendrik J. Monkhorst and James D. Pack. Special points for Brillonin-zone integrations. Physical Review B, 1976, 13, No. 12
22. C. S. Barret and T. B. Massalski, Structure of Metals, McGraw-Hill, New York, 1996
23. C. Kittel, Introduction to Solid State Physics, Wiley, New York, 1971
24. J. Donohue, The Structures of the Elements, Wiley, New York, 1974. pp. 191–199.
25. Ali H. Reshak and Morteza Jamal. Calculation of the lattice constant of hexagonal compounds with two dimensional search of equation of state and with semilocal functionals a new package (2D-optimize). Journal of Alloys and Compounds, 2013, 555, 362-366
26. M. Pozzo and D. Alfe. Hydrogen dissociation and diffusion on transition metal ([Ti, Zr, V, Fe, Ru, Co, Rh, Ni, Pd, Cu, Ag)-doped Mg(0001) surfaces. International Journal of Hydrogen Energy, 2009, 34, 1922-1930
27. Michael J. Mehl and Dimitrios A. Papaconstantopoulos. Applications of a tight-binding total-energy method for transition and noble metals: elastic constants, vacancies, and surfaces of monatomic metals. Physical Review B, 1996, 54, 7, 4519–4530
28. Yingwei Fei Effects of temperature and composition on the bulk modulus of (Mg,Fe) O. American Miner, 1999, 84, 272–276
29. Sergio Speziale, Chang-Sheng Zha, Thomas S. Duffy, Russell J. Hemley, Ho-kwang Mao. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: Implications for the pressure-volume-temperature equation of state. Journal of Geophysical Research: Solid Earth, 2001, 106, B1, 515–528
30. Jian-Zhou Zhao, Lai-Yu Lu, Xiang-Rong Chen, Yu-Lin Bai.. First-principles calculations for elastic properties of the rock salt structure MgO. Physica B: Condensed Matter, 2007, 387, 1-2, 245–249
31. H. Baltache, R. Khenata, M. Sahnoun, M. Driz, B. Abbar, B. Bouhafs.. Full potential calculation of structural, electronic and elastic properties of alkaline earth oxides MgO , CaO and SrO. Physica B: Condensed Matter, 2004, 344, 1-4, 334–342.
32. T. Tsuchiya and K. Kawamura, Systematics of elasticity: Ab initio study in B1B1-type alkaline earth oxides, Journal of Chemical Physics, 114, 22, 10086-10093
33. B.B. Karki, L. Stixrude, S.J. Clark, M.C. Warren, G.J. Ackland and J. Crain. Structure and elasticity of MgO at high pressure. American Mineralogist, 1997, 82, 51–60
34. Graeme Henkelman, Blas P. Uberuaga, Hannes Jo´nsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113, No. 22, 9901-9904
35. K. Honkala, A. Hellman, I. N. Remediakis, A. Logadottir, A. Carlsson, S. Dahl, C. H. Christensen and J. K. Nørskov, Ammonia Synthesis from First-Principles Calculations, Science, 2005, 307, 555—558
36. Á. Logadóttir, J.K. Nørskov, Ammonia synthesis over a Ru(0001) surface studied by density functional calculations, J. Catal., 2003, 220, 2, 273—279
37. S. Dahl, A. Logadottir, R. C. Egeberg, J. H. Larsen, I. Chorkendorff, E. Tornqvist and J. K. Nørskov, Role of Steps in N2 Activation on Ru(0001), Phys. Rev. Lett., 1999, 83 , 1814—1817
38. J. J. Mortensen, Y. Morikawa, B. Hammer, and J. K. Nørskov, Density Functional Calculations of N2 Adsorption and Discussion on a Ru(0001) Surface, J. Catal., 1997, 169, 85—92
39. B. W. Zhang, W. Y. Hu, X. L. Shu, Theory of Embedded Atom Method and its Application to Materials Science: Atomic Materials Design Theory, Hunan University Press, Changsha, 2003, 1 (in Chinese)
40. David S. Sholl and Janice A. Steckel, Density Dunctional Theory: A Practical Introduction, John Wiley and Sons, Inc., New Jersey, 2009
41. Paola Quaino, Fernanda Juarez, Elizabeth Santos and Wolfgang Schmickler. Volcano plots in hydrogen electrocatalysis – uses and abuses. Beilstein J. Nanotechnol, 2014. 5, 846-854
42. Appl M. In: Appl M, editor. Ammonia: principles and industrial practice. 1st ed. Weinheim (Germany): Wiley VCH Verlag GmbH, 1999.
43. Burris RH, Roberts GP. Biological nitrogen fixation. Annu Rev Nutr, 1993, 13, 317-335
44. McPherson IJ, Sudmeier T, Fellowes J, Tsang SCE. Materials for electrochemical ammonia synthesis. Dalton Trans, 2019, 48, 5, 1562-8
45. Hardenburger TL, Ennis M. Nitrogen. Kirk-Othmer Encycl Chem Technol. 2005:1-23.
46. Bocker N, Grahl M. Nitrogen. Ullmann’s Encycl Ind Chem. 2013, 1-27. encyclopedia article
47. Ernst FA. Industrial chemical monographs: fixation of atmospheric nitrogen. London (UK): Chapman & Hall, Ltd., 1928
48. Travis AS. Nitrogen capture: the growth of an international industry (1900-1940). Springer International Publishing, 2018
49. Smil V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. Cambridge (MA), 2004
50. Soloveichik G. Electrochemical synthesis of ammonia as a potential alternative to the Haber e Bosch process. Nature Catalyst, 2019, 2(May), 377-80
51. U.S. Department of energy. Sustainable ammonia synthesis. Dulles (VA), 2016
52. Martin AJ, Shinagawa T, Perez-Ramirez J. Electrocatalytic reduction of nitrogen: from Haber-Bosch to ammonia artificial leaf. Inside Chem, 2019, 5, 2,263-83
53. Wang L, Xia M, Wang H, Huang K, Qian C, Maravelias CT, et al. Greening ammonia toward the solar ammonia refinery. Joule, 2018, 1-20
54. Ye L, Nayak-Luke R, Bañares-Alcántara R, Tsang E. Reaction: “green” ammonia production. Inside Chem, 2017, 3, 5, 712-4
55. Aika, K. I.; Ozaki, A. Kinetics and Isotope Effect of Ammonia Synthesis over Ruthenium. J. Catal. 1970, 16, 97−101
56. Aika, K.; Ozaki, A.; Hori, H. Activation of Nitrogen by AlkaliMetal Promoted Transition-Metal 1. Ammonia Synthesis over Ruthenium Promoted by Alkali-Metal. J. Catal. 1972, 27, 424−431.
57. Bielawa, H.; Hinrichsen, O.; Birkner, A.; Muhler, M. The Ammonia-Synthesis Catalyst of the Next Generation: Barium Promoted Oxide-Supported Ruthenium. Angew. Chem., Int. Ed. 2001, 40, 1061−1063