研究生: |
約瑟夫 Thomas Joseph Palathinkal |
---|---|
論文名稱: |
Investigations on the field emission, optical, and surface acoustic wave properties of ultrananocrystalline diamond films |
指導教授: |
戴念華
Tai, Nyan-Hwa 林諭男 Lin, I-Nan |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 130 |
中文關鍵詞: | Ultrananocrystalline diamond 、Field emission 、Optical properties 、surface acoustic wave properties 、diamond films 、chemical vapor deposition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Growth, diverse properties, and possible applications of ultrananocrystalline diamond (UNCD) films are investigated in this research work. Initially, possibility of improving the electron field emission (EFE) property of the films by using ion implantation process is investigated. We have found that high dose N ion implantation could improve the EFE properties, which is possibly due to the doping effect of N into the grain boundaries of UNCD and charge transfer-doping mechanism. Furthermore, multi-energy N ion implantation (MENII) processes are designed to implant dopant species uniformly in the films to improve further the EFE properties. The MENII process carried out at an elevated temperature tremendously improved the EFE properties. We believe that this new technique can be applied to implant species into materials in a controlled manner to improve their properties.
The field emitting pyramidal shape UNCD tips were fabricated by novel process, in which the UNCD was used as the emission site on highly N-doped (20%) NCD tips. Emitters with tip size of 2 □m showed high EFE properties as compared to tips with larger sizes. Moreover, the EFE property of tips is improved using the high dose N ion implantation process. Alternatively, field emitting silicon nanostructures (SiNS) were fabricated and the emission is enhanced by the growth of UNCD. However, a modified pre-seeding (UND) process had to be developed to create nucleation sites on the tips by without deteriorating their properties. We found that, sub-2 nm UNCD grains are grown on the nanotips, which improved the emission properties tremendously. We expect that, the UND process can be used effectively for creating nucleation sites on other nanostructures to grow diamond films.
The transmittance study of thin UNCD films on transparent quartz substrate has shown to possess very high transmittance in comparison with other larger grain diamonds (NCD or MCD) of similar thickness. We have analyzed the possibility of utilizing ion implantation for controlled modification on the optical properties of the films. In addition, UNCD films were fabricated on YZ-cut LiNbO3 substrates by using a modified growth process, which is designated as LPP process. The as grown UNCD film has shown to possess room temperature conductivity and high EFE properties. Insulating UNCD films on these substrates were fabricated using interlayer of either Si or SiO2, which was applied to study the surface acoustic wave (SAW) characteristics.
[1] K. E. Spear and J. P. Dismukes, “Synthetic diamond: Emerging CVD science and technology.” Wiley, Pennington, NJ (1994).
[2] B. Dischler and C. Wild, “Low-pressure synthetic diamond: Manufacturing and applications.” Springer, Heidelberg (1998).
[3] D. M. Gruen, “Nanocrystalline diamond films,” Annu. Rev. Mater. Sci. 29, 211–259 (1999).
[4] Y. Chakk, R. Brener, and A. Hoffman, “Enhancement of diamond nucleation by ultrasonic substrate abrasion with a mixture of metal and diamond particles,” Appl. Phys. Lett. 66, 2819–2821 (1995).
[5] A. C. Ferrari and J. Robertson, “Origin of the 1150–cm-1 Raman mode in nanocrystalline diamond,” Phys. Rev. B 63, 121405(R)/1–4 (2001).
[6] C. Mapelli, C. Castiglioni, G. Zerbi and K. M□llen, “Common force field for graphite and polycyclic aromatic hydrocarbons,” Phys. Rev. B 60, 12710–12725 (1999).
[7] F. L. Normand, J. Hommet, T. Szorenyi, C. Fuchs, and E. Fogarassy, “XPS study of pulsed laser deposited CNx films,” Phys. Rev. B 64, 235416/1–15 (2001).
[8] A. V. Sumant, D. S. Grierson, J. E. Gerbi, J. Birrell, U. D. Lanke, O. Auciello, J. A. Carlisle, and R. W. Carpik, “Toward the ultimate tribological interface: Surface chemistry and nanotribology of ultrananocrystalline diamond,” Adv. Mater. 17, 1039–1045 (2005).
[9] J. C. Madaleno, M. K. Singh, E. Titus, G. Cabral, J. Gracio, and L. Pereira, “Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays,” Appl. Phys. Lett. 92, 23113/1–3 (2008).
[10] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, V. V. Zhirnov, E. I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin, “Electron field emission for ultrananocrystalline diamond films,” J. Appl. Phys. 89, 2958–2967 (2001).
[11] K. Okano, S. Koizumi, S. R. P. Silva, and G. A. J. Amaratunga, “Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diamond,” Nature 381, 140–141 (1996).
[12] W. Zhu, G. P. Kochanski, and S. Jin, “Low field electron emission from undoped nanostructured diamond,” Science 282, 1471–1473 (1998).
[13] W. B. Wang, F. X. Lu, and Z. X. Cao, “Growth of nanocrystalline diamond protective coatings on quartz glass,” J. Appl. Phys. 91, 10068–10073 (2002).
[14] S. A. Catledge, Y. K. Vohra, and P. B. Mirkarimi, “Low temperature growth of nanostructured diamond on quartz spheres,” J. Phys. D: Appl. Phys. 38, 1410–1414 (2005).
[15] Y. Liou, A. Inspektor, R. Weimer, and R. Messier, “Low-temperature diamond deposition by microwave plasma-enhanced chemical vapor deposition,” Appl. Phys. Lett. 55, 631–633 (1989).
[16] R. K. Singh, D. R. Gilbert, and J. Laveigne, “Growth of adherent diamond films on optically transparent sapphire substrates,” Appl. Phys. Lett. 69, 2181–2183 (1996).
[17] M. D. Fries and Y. K. Vohra, “Properties of nanocrystalline diamond thin films grown by MPCVD for biomedical implant purposes,” Diamond Relat. Mater. 13, 1740–1743 (2004).
[18] Y. F. Tseng, Y. C. Lee, C. Y. Lee, I. N. Lin, and H. T. Chiu, “On the enhancement of field emission performance of ultrananocrystalline diamond coated nanoemitters,” Appl. Phys. Lett. 91, 63117/1–3 (2007).
[19] K.Yamanouchi, N. Sakurai, and T. Satoh, “SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure,” IEEE Ultrason. Symp. Proc. 351–354 (1989).
[20] Y. C. Lee, S. J. Lin, V. Buck, R. Kunze, H. Schmidt, C. Y. Lin, W. L. Fang, and I. N. Lin, “Surface acoustic wave properties of natural smooth ultra-nanocrystalline diamond characterized by laser-induced SAW pulse technique,” Diamond Relat. Mater. 17, 446–450 (2008).
[21] R. Kailash, “Doping of diamond,” Carbon 37, 781–785 (1999).
[22] W. Zhu, G. P. Kochanski, S. Jin, and L. Seibles, “Defect-enhanced electron field emission from chemical vapor deposited diamond,” J. Appl. Phys. 78, 2707–2711 (1995).
[23] S. A. Kajihara, A. Antonelli, and J. Bernholc, “Nitrogen and potential n-type dopants in diamond,” Phys. Rev. Lett. 66, 2010–2013 (1991).
[24] E. Rohrer, C. F. O. Graeff, R. Janssen, C. E. Nebel, H. Guettler, and R. Zachai, “Nitrogen-related dopant and defect states in CVD diamond,” Phys. Rev. B 54, 7874–7880 (1996).
[25] D. Zhou, A. R. Krauss, L. C. Qin, T. G. McCauley, D. M. Gruen, T. D. Corrigan, and R. P. H. Chang, “Synthesis and electron field emission of nanocrystalline diamond thin films grown from N2/CH4 microwave plasmas,” J. Appl. Phys. 82, 4546–4550 (1997).
[26] T. D. Corrigan , D. M. Gruen, A. R. Krauss, P. Zapol, and R. P. H. Chang, “The effect of nitrogen addition to Ar-CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond,” Diam. Relat. Mater. 11, 43–48 (2002).
[27] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films, Appl. Phys. Lett. 79, 1441–1443 (2001).
[28] W. Zhu, G. P. Kochanski, S. Jin, L. Seibles, D. C. Jacobson, M. McCormack, and A. E. White, “Electron field emission from ion-implanted diamond,” Appl. Phys. Lett. 67, 1157–1159 (1995).
[29] P. M. Koinkar, R. S. Khairnar, S. A. Khan, R. P. Gupta, D. K. Avasthi, and M. A. More, “Influence of high energy ion irradiation on the field emission characteristics of CVD diamond films,” Nucl. Instr.Meth. B 244, 217–220 (2006).
[30] K. C. Walter, H. H. Kung, and C. J. Maggiore, “Improved field emission of electrons from ion irradiated carbon,” Appl. Phys. Lett. 71, 1320–1322 (1997).
[31] S. Talapatra, P. G. Ganesan, T. Kim, R. Vajtai, M. Huang, M. Shima, G. Ramanath, D. Srivastava, S. C. Deevi, and P. M. Ajayan, “Irradiation-induced magnetism in carbon nanostructures,” Phys. Rev. Lett. 95, 97201/1–4 (2005).
[32] S. Talapatra, J. Y. Cheng, N. Chakrapani, S. Trasobares, A. Cao, R. Vajtai, M. B. Huang, and P. M. Ajayan, “Ion irradiation induced structural modifications in diamond nanoparticles,” Nanotechnology 17, 305–309 (2006).
[33] J. Nakata, “Annealing of ion-implanted defects in diamond by MeV ion-beam irradiation,” Phys. Rev. B. 60, 2747–2761 (1999).
[34] A. V. Krasheninnikov and F. Banhart, “Engineering of nanostructured carbon materials with electron or ion beams,” Nature Mater. 6, 723–733 (2007).
[35] A. V. Krasheninnikov, K. Nordlund., and J. Keinonen, “Production of defects in supported carbon nanotubes under ion irradiation,” Phys. Rev. B. 65, 165423/1–8 (2002).
[36] P. T. Joseph, N. H. Tai, Y. C. Lee, H. Niu, W. F. Pong, and I. N. Lin, “Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films,” J. Appl. Phys. 103, 43720/1–7 (2008).
[37] J. F Zielger, J. P. Biersack, and U. Littmark, “The stopping and range of ions in solids,” Pergamon, New York (1985).
[38] K. Fabisiak, M. Maar-Stumm, and E. Blank, “Defects in chemically vapour-deposited diamond films studied by electron spin resonance and Raman spectroscopy,” Diam. Relat. Mater. 2, 722–727 (1993).
[39] S. Prawer and R. Kalish, “Ion implantation induced transformation of diamond,” Phys. Rev. B 51, 15711–15722 (1995).
[40] Y. Fan, A. G. Fitzgerald, P. John, C. E. Troupe, and J. I. B. Wilson, “X-ray photoelectron spectroscopy studies of CVD diamond films,” Surf. Interface Anal. 34, 703–707 (2002).
[41] A. Hoffman, I. Andrienko, D. N. Jamieson, and S. Prawar, “Electron trapping and detrapping in ion-beam-damaged diamond surfaces,” Appl. Phys. Lett. 86, 44103/1–3 (2005).
[42] D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen, “Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma,” J. Appl. Phys. 83, 540–543 (1998).
[43] A. Laikhtman, I. Gouzman, A. Hoffman, G. Comtet, L. Hellner, and G. Dujardin, “Sensitivity of near-edge x-ray absorption fine structure spectroscopy to ion beam damage in diamond films,” J. Appl. Phys. 86, 4192–4198 (1999).
[44] D. Zhou, F. A. Stevie, L. Chow, J. McKinley, H. Gnaser, and V. H. Desai, “Nitrogen incorporation and trace element analysis of nanocrystalline diamond thin films by secondary ion mass spectrometry,” J. Vac. Sci. Technol. A 17, 1135–1140 (1999).
[45] C. Uzan-Saguy, C. Cytermann, R. Brener, V. Ritcher, M. Shaanan, and R. Kalish, “Damage threshold for ion-beam induced graphitization of diamond,” Appl. Phys. Lett. 67, 1194–1196 (1995).
[46] P. Zapol, M. Sternberg, L. A. Curtiss, T. Frauenheim, and D. M. Gruen, “Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries,” Phys. Rev. B 65, 45403/1–11 (2001).
[47] O. A. Williams, S. Curat, J. E. Gerbi, D. M. Gruen, and R. B. Jackman, “n-type conductivity in ultrananocrystalline diamond films,” Appl. Phys. Lett. 85, 1680–1682 (2004).
[48] E. J. Correa, Y. Wu, J. G. Wen, R. Chandrasekharan, and M. A. Shannon, “Electrical conduction in undoped ultrananocrystalline diamond thin films and its dependence on chemical composition and crystalline structure,” J. Appl. Phys. 102, 113706/1–10 (2007).
[49] V. Chakrapani, J. C. Angus, A. B. Anderson, S. D. Wolter, B. R. Stoner, and G. U. Sumanaseker, “Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple,” Science 318, 1424–1430 (2007).
[50] L. Li, X. Fang, H. G. Chew, F. Zheng, T. H. Liew, X. Xu, Y. Zhang, S. Pan, G. Li, and L. Zhang, “Crystallinity-controlled germanium nanowire arrays: Potential field emitters,” Adv. Funct. Mater. 9999, 1–9 (2008).
[51] J. C. She, S. Z. Deng, N. S. Xu, R. H. Yao, and J. Cheng, “Fabrication of vertically aligned Si nanowires and their application in a gated field emission device,” Appl. Phys. Lett. 88, 13112/1–3 (2006).
[52] J. M. Bonard, N. Weiss, H. Kind, T. Stockli, L. Forro, and K. Kern, “Tuning the field emission properties of patterned carbon nanotube films,” Adv. Mater. 13, 184–188 (2001).
[53] V. A. Fonoberov and A. A. Balandin, “Giant enhancement of the carrier mobility in silicon nanowires with diamond coating,” Nano Lett. 6, 2442–2446 (2006).
[54] R. H. Fowler and L. Nordheim, “Electron field emission in intense electric fields,” Proc. R. Soc. Lond. A 119, 173–181 (1928).
[55] H. Hirari and K. I. Kondo, “Modified phases of diamond formed under shock compression and rapid quenching,” Science 253, 772–774 (1991).
[56] X. Xiao, J. Birrel, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “Low temperature growth of ultrananocrystalline diamond,” J. Appl. Phys. 96, 2232–2239 (2004).
[57] L. J. Chen, N. H. Tai, C. Y. Lee, and I. N. Lin, “Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond,” J. Appl. Phys. 101, 64308/1–6 (2007).
[58] T. G. McCauley, D. M. Gruen, and A. R. Krauss, “Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma,” Appl. Phys. Lett. 73, 1646–1648 (1998).
[59] M. Hiramatsu, K. Kato, C. H. Lau, J. S. Foord, and M. Hori, “Measurement of C2 radical density in microwave methane/hydrogen plasma used for nanocrystalline diamond film formation,” Diamond Relat. Mater. 12, 365–368 (2003).
[60] S. T. Lee, Z. Lin, and X. Jiang, “CVD diamond films: nucleation and growth,” Mater. Sci. and Engg. 25, 123–154 (1999).
[61] C. Gao and X. D Xiang, “Quantitative microwave near-field microscopy of dielectric properties,” Rev. Sci. Instrum. 69, 3846–3851 (1998).
[62] T. Wei, X. D. Xiang, W. G.. Wallace-Freedman, and P. G.. Schultz, “Scanning tip microwave near-field microscope,” Appl. Phys. Lett. 68, 3506–3508 (1996).
[63] D. E. Steinhauer, C. P. Valhacos, F. C. Wellstood, S. M. Anlage, C. Canedy, R. Ramesh, A. Stanishevlesky, and J. Melngailis, “Imaging of microwave permittivity, tunability, and damage recovery in (Ba, Sr)TiO3 thin films,” Appl. Phys. Lett. 75, 3180–3182 (1999).
[64] Y. Lu, T. Wei, F. Duewer, Y. Lu, N. B. Ming, P. G. Schultz, and X. D. Xiang, “Nondestructive Imaging of dielectric-constant profiles and ferroelectric domains with a scanning-tip microwave near-field microscope,” Science 276, 2004–2006 (1997).
[65] P. T. Joseph, Y. C. Chen, Y. H. Chu, H. F. Cheng, and I. N. Lin, “Microwave properties of bst and BST/BMT thin films grown on sapphire substrate by evanescent microwave probe,” Integrated Ferroelectrics 77, 45–50 (2005).
[66] Y. Zhang, L. Xie, Z. Zhou, J. Sun, and S. T. Lee, “Characteristics of diamond crystals deposited on quartz substrates by chemical vapor deposition,” J. Crystal Growth 169, 722–726 (1996).