簡易檢索 / 詳目顯示

研究生: 王上瑋
Wang, Shang-Wei
論文名稱: 應用於壓電共振式陀螺儀驅動迴路最佳化之介面電路設計
Interface Circuit Design for Driving Loop Optimization of Piezoelectric MEMS Resonant Gyroscopes
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 方維倫
Fang, Wei-Leun
盧向成
Lu, Shiang-Cheng
邱一
Chiu, Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 104
中文關鍵詞: 微機電系統壓電共振式陀螺儀體聲波陀螺儀類比介面電路設計輔助相位回授迴路相位補償轉阻放大器電壓調控式相移器
外文關鍵詞: MEMS, Piezoelectric Resonant Gyroscopes, BAW Gyroscopes, Analog Interface Circuit Design, Secondary Phase Feedback, Loop Phase Compensation, Transimpedance Amplifier, Voltage-Controlled Phase Shifter
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主軸為微機電壓電共振式陀螺儀感測系統之類比電路設計與開發,同時提出兩種可優化陀螺儀指標參數如靈敏度、偏誤不穩定度和角度隨機遊走的驅動迴路補償方法,分別是機械式輔助相位回授以及電路式迴路相位補償機制,並已透過商用鎖相放大器驗證兩補償機制的可行性,此研究使用TSMC 0.18μm CMOS Process Technology製程平台進行類比介面電路之設計與開發,電路架構包含全差動式轉阻放大器及電壓調控式相移器,最後以SiP (System in Package)形式整合陀螺儀元件及本研究之介面電路晶片為目標,實現整合式微機電陀螺儀感測系統。
    本研究內容包含微機電陀螺儀的應用領域與發展前景、微機電共振式陀螺儀之機械模型及理論推導、常用轉阻放大器架構之性能比較、引入機械式輔助相位回授機制及電路式迴路相位補償機制實現陀螺儀驅動迴路最佳化、壓電式體聲波模態陀螺儀元件架構設計、類比介面電路設計及模擬結果,包含全差動式轉阻放大器及電壓調控式相移器,最後為元件與介面電路之量測結果,整合系統量測包含開迴路頻率響應量測、振盪器功率及相位雜訊量測、轉速靈敏度量測及Allan Deviation分析,未來將以完成元件電路全整合系統之陀螺儀性能參數量測為首要目標,並與先前之研究進行比較,最終期望與各式感測器進行整合並應用於物聯網中,完成整合型慣性感測器中樞系統。


    The research topic focuses on the implementation of analog interface circuit for Piezoelectric Bulk Acoustic Wave Gyroscope System. Two compensation approaches for the driving loop, including Secondary Phase Feedback and Loop Phase Compensation, are proposed and verified to optimize the gyro specifications such as Sensitivity, Bias Instability, and Angle Random Walk, using Zurich Lock-In Amplifier. The analog interface circuit, including fully differential transimpedance amplifier and voltage-controlled phase shifter, are designed and developed using TSMC 0.18μm CMOS Process Technology platform. The final goal is to use System in Package (SiP) to realize a fully integrated MEMS Gyroscope Sensing System.
    The content of this thesis covers the application and vision for MEMS gyroscopes, working principle and physical model for resonant gyroscopes, driving loop optimization using Secondary Phase Feedback and Loop Phase Compensation, piezoelectric BAW gyroscope structure design, interface circuit design and simulation, and measurements for the MEMS device, interface circuit and integrated system, including open-loop frequency response, closed-loop phase noise performance and angular rate sensitivity and Allan Deviation for integrated MEMS gyroscope system. Finally, this device is expected to be integrated with other sensors for potential IoT applications to complete a Fully Integrated Inertial Sensing Hub System in future.

    摘要 i 致謝 iii 圖目錄 v 表目錄 xii 第 一 章 前言 1 1-1研究動機與背景 1 1-2文獻回顧 4 1-2-1 微機電共振式陀螺儀 4 1-2-2 類比介面電路 8 1-3本文架構 16 第 二 章 理論分析 18 2-1 微機電陀螺儀運作原理 18 2-1-1 機械動態模型推導 18 2-1-2 正交解調技術 21 2-2驅動迴路最佳化 24 2-2-1 機械式補償機制(輔助相位回授) 25 2-2-2 電路式補償機制(迴路相位補償) 27 2-3 類比介面電路設計 28 2-3-1 轉阻放大器 28 2-3-2 電壓調控式相移器 36 第 三 章 元件與電路之模擬與討論 40 3-1壓電共振式陀螺儀設計 40 3-1-1 壓電傳感機制 40 3-1-2 支撐驅動傳感機制 42 3-1-3 壓電體聲波模態陀螺儀元件 43 3-2 類比介面電路模擬 46 3-2-1 轉阻放大器之電路模擬 46 3-2-2 電壓調控式相移器之電路模擬 51 3-2-3 驅動模態回授電路之模擬 55 第 四 章 元件與電路之量測與討論 63 4-1 陀螺儀共振器及轉速量測 63 4-1-1 共振器頻譜量測 63 4-1-2 轉速量測 68 4-2 輔助相位回授及迴路相位補償機制之量測 71 4-2-1 輔助相位回授補償機制之頻譜量測 71 4-2-2 輔助相位回授補償機制之轉速量測 74 4-2-3 迴路相位補償機制之轉速訊號量測 79 4-3 類比介面電路量測 83 4-3-1 轉阻放大器之電路量測 83 4-3-2 元件整合轉阻放大器之量測 85 4-3-3 電壓調控式相移器之電路量測 92 4-3-4 元件整合電壓調控式相移器之量測 96 第 五 章 結語 99 5-1 結論 99 5-2 未來工作 100 5-2-1 類比介面電路設計優化 100 5-2-2 System in Package整合微機電陀螺儀系統 100 參考文獻 102

    [1] D. Sehrawat and N. S. Gill, "Smart sensors: Analysis of different types of IoT sensors," 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), 2019, pp. 523-528.
    [2] H. Ahmed, X. -H Le, S. Gao, B. -W, Dong, H. Tianyiyi, Z. -X Zhang, F. Wen, S. Xu and C. -K, Lee, "Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications," Nano Express, 2021.
    [3] B. O. Hannaidh et al., "Devices and sensors applicable to 5G system implementations," 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), 2018, pp. 1-3.
    [4] G. K. Balachandran, V. P. Petkov, T. Mayer and T. Baislink, "A 3-Axis gyroscope for electronic stability control with continuous self-test," 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, 2015, pp. 1-3.
    [5] L. Keke, C. Yong and L. Songlin, "Research on integrated attitude determination methods based on MEMS device for quadrotor UAVs," 2017 IEEE International Conference on Unmanned Systems (ICUS), 2017, pp. 150-155.
    [6] T. Wang, Y. Zhou and W. Wang, "Design of the navigation method of the mechanical gyro based inertial platform system," 2017 24th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS), 2017, pp. 1-4.
    [7] N. H. Abdallah, R. Brahim, Y. Bouslimani, M. Ghribi and A. Kaddouri, "IoT device for Athlete's movements recognition using inertial measurement unit (IMU)," 2021 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT), 2021, pp. 109-114.
    [8] EPSON, "Gyro sensor – How they work and what’s ahead,", EPSON Microdevices.
    [9] Yole, "High-end inertial technology maturity," YOLE Development, 2020.
    [10] S. Nasiri, "A critical review of MEMS gyroscopes technology and commercialization status," 2005.
    [11] Z. Mohammad et al., "Boost inertial MEMS apps with BAW gyroscope sensors," EDN Asia, 2014.
    [12] H. Johari and F. Ayazi, "High-frequency capacitive disk gyroscopes in (100) and (111) silicon," 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS), 2007, pp. 47-50.
    [13] R. Tabrizian et al., "High-frequency AlN-on-silicon resonant square gyroscopes," J. Microelectromech Syst. 2013, pp. 1007-1009.
    [14] M. Hodjat-Shamami, A. Norouzpour-Shirazi, R. Tabrizian and F. Ayazi, "A dynamically mode-matched piezoelectrically transduced high-frequency flexural disk gyroscope," 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2015, pp. 789-792.
    [15] V. M. N. Passaro, A. Cuccovillo, L. Vaiani, M. DeCarlo and C. E. Campanella, "Gyroscope technology and applications: A review in the industrial perspective. "Sensors, 2017.
    [16] R. Agata, and V. Barzdenas, "A review of modern CMOS transimpedance amplifiers for OTDR applications" Electronics 8, 2019, pp. 1073.
    [17] M. Kubo, H. Yotsuda, T. Kosaka and N. Nakano, "A design of transimpedance amplifier using OTA as a feedback resistor for patch-clamp measurement system," 2015 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), 2015, pp. 307-311.
    [18] B. Razavi, "A 622 Mb/s 4.5 pA//spl radic/Hz CMOS transimpedance amplifier [for optical receiver front-end]," 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056), 2000, pp. 162-163.
    [19] B. Ryan, "Transimpedance amplifier design using 0.18 µm CMOS technology. ", 2017.
    [20] D. C. Dias, F. S. de Melo, L. B. Oliveira and J. P. Oliveira, "Regulated common-gate transimpedance amplifier for radiation detectors and receivers," 2014 Proceedings of the 21st International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), 2014, pp. 540-545.
    [21] M. Atef, "High gain transimpedance amplifier with current mirror load," 2014 Proceedings of the 21st International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), 2014, pp. 220-223.
    [22] Y. -F Ni, H. -S Li, and L. -B Huang,"Design and application of quadrature compensation patterns in bulk silicon micro gyroscopes" Sensors 14, 2014, pp. 20419-20438.
    [23] A. Omar, A. Elshennawy, M. AbdelAzim and A. H. Ismail, "Analyzing the impact of phase errors in quadrature cancellation techniques for MEMS capacitive gyroscopes," 2018 IEEE SENSORS, 2018, pp. 1-4.
    [24] C. Xu and G. Piazza, "Active boost in the quality factor of an AlN MEMS resonator up to 165,000," 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), 2019, pp. 907-910.
    [25] C. -Y. Chang, G. Pillai and S. -S. Li, "Phase noise optimization of piezoelectric bulk mode MEMS oscillators based on phase feedback in secondary loop," 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), 2022, pp. 212-215.
    [26] M. Tan and Q. Zhou, "A two-stage amplifier with active miller compensation," 2011 IEEE International Conference on Anti-Counterfeiting, Security and Identification, 2011, pp. 201-204.
    [27] A. De Villa, "A 3.86uW miller-compensated inverter transimpedance amplifier for photoplethysmography Sensing," 2021 International Symposium on Electrical and Electronics Engineering (ISEE), 2021, pp. 15-19.
    [28] Dallas Semiconductor, Application Note 184, "Digitally-controlled phase shift using the DS1669", 2002.
    [29] J. -K. Woo, C. Boyd, J. Cho and K. Najafi, "Ultra-low-noise transimpedance amplifier for high-performance MEMS resonant gyroscopes," 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2017, pp. 1006-1009.
    [30] N. M. Nguyen, C. -Y. Chang, G. Pillai and S. -S. Li, "Design of piezoelectric MEMS bulk acoustic wave mode-matched gyroscopes based on support transducer," 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS), 2021, pp. 338-341.

    QR CODE