研究生: |
仇德軒 Chiou, De-Shiuan |
---|---|
論文名稱: |
Performance and Power Optimization for Power Gating Designs 針對功率閘控制設計之效能及功率最佳化 |
指導教授: |
張世杰
Chang, Shih-Chieh |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 功率閘 、漏電功率 、睡眠電晶體網路 |
外文關鍵詞: | power gating, leakage power, DSTN |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
功率閘控已經成為降低漏電功率的最有效的方法之一。早先被提出的分散式睡眠電晶體網路(Distributed Sleep Transistor Network, DSTN),藉由串接虛擬接地線來最小化流過睡眠電晶體的瞬時最大電流(Maximum Instantaneous Current, MIC)。在這篇論文裡,我們提出了決定睡眠電晶體大小的方法來最小化漏電功率。
首先,我們提出了一個時間複雜度為O(nlgn)的演算法,來有效估計睡眠電晶體兩端的壓降的上限值。我們的方法並考慮到不同邏輯叢集間放電電流的關連性,藉此避免了過份悲觀的壓降估計。第二,我們把單一一個時脈週期細分為多個時間單元,來觀察瞬時最大電流、壓降、和睡眠電晶體網路三者間的關連性。藉由這層關係,我們針對DSTN架構,提出了縮小睡眠電晶體總面積的演算法。有鑑於在功率閘設計中,常會加上去耦合電容來減少壓降等雜訊,因此我們決定睡眠電晶體大小的方法同時也考慮到了去耦合電容的效應。而針對我們方法的收斂性,我也提出了嚴謹的證明。
Power gating is one of the most effective ways to reduce leakage power. Previously, a Distributed Sleep Transistor Network (DSTN) was proposed to reduce the sleep transistor area for power gating by connecting all the virtual ground lines together to minimize the Maximum Instantaneous Current flowing through sleep transistors. In this thesis, we propose two sleep transistor sizing methodologies for leakage power minimization. First, we present an O(n lg n)-time algorithm for efficiently estimating a tight upper bound of the voltage drop across sleep transistors in DSTN structure. Our algorithm takes the correlation between discharge current of different logic clusters into consideration, which avoids over-pessimistic voltage drop estimation. Secondly, we introduce a new relationship among Maximum Instantaneous Current, IR drops and sleep transistor networks from a temporal viewpoint. Based on this relationship, we propose an algorithm to reduce the total sizes of sleep transistors in DSTN designs. In our sizing method, the effect of decoupling capacitances is also taken into account since decaps are commonly inserted in a power gating design to reduce the IR drop noise. Also, the convergence of our sizing algorithm is guaranteed through the theorem we proposed.
[1] M. Anis, S. Areibi, and M. Elmasry, “Design and Optimization of Multithreshold CMOS (MTCMOS) Circuits,” IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 10, pp. 1324-1342, Oct. 2003.
[2] M. Anis, S. Areibi, M. Mahmoud, and M. Elmasry , “Dynamic and Leakage Power Reduction in MTCMOS Circuits Using an Automated Efficient Gate Clustering Technique,” Proc. of the DAC, pp. 480-485, 2002.
[3] P. Babighian, L. Benini, and E. Macii, “Sizing and Characterization of Leakage-Control Cells for Layout-Aware Distributed Power-Gating,” Proc. of the DATE, pp. 720-721, 2004.
[4] H. Chang and S. S. Sapatnekar, “Full-Chip Analysis of Leakage Power Under Process Variations, Including Spatial Correlations,” Proc. of the DAC, pp. 523-528, 2005.
[5] D. S. Chiou, S. H. Chen, and S. C. Chang, “Sleep Transistor Sizing for Leakage Power Minimization Considering Charge Balancing,” accepted in IEEE Transactions on VLSI Systems.
[6] K. Flutner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy Caches: Simple Techniques for Reducing Leakage Power,” Proc. of the ISCA, pp. 148-157, 2002.
[7] L. Guo, L. Benini, Y. Cai, Q. Zhou, L. Kang, and X. Hong, “A Novel Performance Driven Power Gating Based on Distributed Sleep Transistor Network,” Proc. of the GLSVLSI, pp. 255-260, 2008.
[8] C. T. Hsieh, J. C. Lin, and S. C. Chang, “A Vectorless Estimation of Maximum Instantaneous Current for Sequential Circuits,” Proc. of ICCAD, pp. 537-540, 2004.
[9] Y. M. Jiang, K. T. Cheng, and A. Kristic, “Estimation of Maximum Power and Instantaneous Current using a Genetic Algorithm,” Proc. of the CICC, pp. 135-138, 1997.
[10] A. Kristic and K. T. Cheng, “Vector Generation for Maximum Instantaneous Current through Supply Lines for CMOS Circuits,” Proc. of the DAC, pp. 383-388, 1997.
[11] H. Kriplani, F. Najm, and I. N. Hajj, “Pattern Independent Maximum Current Estimation in Power and Ground Buses of CMOS VLSI Circuits: Algorithms, Signal Correlations, and their Resolution,” IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, vol. 14, no. 8, pp. 998-1012, Aug. 1995.
[12] J. Kao, S. Narendra, and A. Chandrakasan, “Subthreshold Leakage Modeling and Reduction Techniques,” Proc. of the ICCAD, pp. 141-148, 2002.
[13] J. Kao, S. Narendra, and A. Chandrakasan, “MTCOMS Hierarchical Sizing based on Mutual Exclusive Discharge Patterns,” Proc. of the DAC, pp. 495-500, 1998.
[14] J. Kao, A. Chandrakasan, and D. Antoniadis, “Transistor Sizing Issues and Tool for Multi-threshold CMOS Technology,” Proc. of the DAC, pp. 409-414, 1997.
[15] C. Long and L. He, “Distributed Sleep Transistor Network for Power Reduction,” IEEE Transactions on VLSI Systems, vol. 12, no. 9, pp. 937-946, Sep. 2004.
[16] S. Mutoh, T. Douseki, Y. Matsuya, T. Aoki, S. Shigematsu, and J. Yamata, “1-V Power Supply High-Speed Digital Circuit Technology with Multi-Threshold Voltage CMOS,” IEEE Journal of Solid-State Circuits, vol. 30, no. 8, pp. 847-854, Aug. 1995.
[17] S. Mutoh, S. Shigematsu, Y. Matsuya, H. Fukuda, T. Kaneko, and J. Yamada, “A 1-V Multithreshold-Voltage CMOS Digital Signal Processor for Mobile Phone Application,” IEEE Journal of Solid-State Circuits, vol. 31, no. 11, Nov. 1996.
[18] E. Pakbaznia, and M. Pedram, “Coarse-Grain MTCMOS Sleep Transistor Sizing Using Delay Budgeting,” Proc. of the DATE, pp. 385-390, 2008.
[19] K. Roy, S. Mukhopadhyay, and H. M. Meimand, “Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits,” Proc. of the IEEE, vol. 14, no. 2, pp. 305-327, Feb. 2003.
[20] R. R. Rao, A. Devgan, D. Blaauw, and D. Sylvester, “Parametric Yield Estimation Considering Leakage Variability,” Proc. of the DAC, pp. 442-447, 2004.
[21] A. Sathanur, L. Benini, A. Macii, E. Macii, and M. Poncino, “Multiple Power-Gating Domain (Multi-VGND) Architecture for Improved Leakage Power Reduction,” Proc. of the ISLPED, pp. 51-56, 2008.
[22] K. Shi, and D. Howard, “Challenges in Sleep Transistor Design and Implementation in Low-Power Designs,” Proc. of the DAC, pp. 113-116, 2006.
[23] K. Shi, Z, Lin, Y, Jian, and L. Yuan, “Simultaneous Sleep Transistor Insertion and Power Network Synthesis for Industrial Power Gating Designs,” Journal of Computers, vol. 3, no. 3, pp. 6-13, Mar. 2008.
[24] S. Sirichotiyakul and et al., “Stand-by Power Minimization through Simultaneous Threshold Voltage Selection and Circuit Sizing,” Proc. of the DAC, pp. 436-441, 1999.
[25] W. Wang, M. Anis, and S. Areibi, “Fast Techniques for Standby Leakage Reduction in MTCMOS Circuits,” Proc. of the IEEE International SOCC, pp. 21-24, 2004.
[26] C. Y. Wang and K. Roy, “Maximization of Power Dissipation in Large CMOS Circuits Considering Spurious Transitions,” IEEE Transaction on Circuits and Systems, vol. 47, no. 4, pp. 483-490, Apr. 2000.
[27] J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De., “Dynamic Sleep Transistor and Body Bias for Active Leakage Power Control of Microprocessors,” IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1838-1845, Nov. 2003.
[28] L. Wei, Z. Chen, K. Roy, M. C. Johnson, Y. Ye, and V. K. De, “Design and Optimization of Dual-Threshold Circuits for Low-Voltage Low-Power Applications,” IEEE Transactions on VLSI Systems, vol. 7, no. 1, pp. 16-24, Mar. 1999.
[29] Synopsys Inc. PrimePower Version-X 2005, 12 – User’s Manual.