研究生: |
曾柏翰 Tseng, Po Han |
---|---|
論文名稱: |
利用斑馬魚肝癌模式平台鑑定出兩種抗血管新生、抗增殖及抗轉移的新穎小分子藥物 Identification of two novel small compounds with anti-angiogenesis, anti-proliferation and anti-migration for liver cancer model in zebrafish platform |
指導教授: |
喻秋華
Yuh, Chiou Hwa 汪宏達 Wang, Horng Dar |
口試委員: |
李岳倫
Lee, Yueh Luen 謝興邦 Hsieh, Hsing Pang 蕭暉議 Shiao, Hui Yi |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 59 |
中文關鍵詞: | 斑馬魚 、肝細胞癌 、藥物篩選 |
外文關鍵詞: | zebrafish, hepatocellular carcinoma, drug screening |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肝細胞癌是全世界最常見的惡性腫瘤第五名,同時在癌症死亡率排名第三。蕾莎瓦(Sorafenib)是第一個也是現在唯一被FDA在2007年核准用來治療晚期肝細胞癌的藥物,所以篩選出新穎藥物用於治療肝癌是非常重要且迫切的。先前實驗室已經建立斑馬魚肝癌模型可在11個月產生肝癌,本論文的第一部分為建立一個較高發生率且更早誘發肝癌的模型。藉由過度餵食的方法,我們發現HBx,src(p53-)三重轉殖基因的母魚在過度餵食下可在五個月產生肝癌。這個模式將用於之後篩選抗肝癌藥物之用。
本論文的第二部分為利用血管螢光魚(fli1:EGFP)胚胎篩選來自生技與藥物研究所提供的小分子藥物庫找出具抑制血管新生作用的小分子藥物。從LIB1F和LIB1O這兩個有抑制血管新生作用的核心結構之560種衍生物,我們發現共69種衍生物具有抑制血管新生的作用。從中挑出六種不會造成胚胎發育缺陷的小分子藥物,發現LIB1O0078和LIB1O0144具有極低的半抑制濃度(IC50),接著測試這兩種藥物在異種移植模式抗癌細胞增生及轉移的能力,及在轉殖基因斑馬魚治療肝癌的能力。我們也測試這兩種藥物的肝毒性,以及對胚胎毒性。
我們發現LIB1O0078具有較佳的抗癌細胞增生的能力,而LIB1O0144抗癌細胞轉移的能力較好。接著我們利用HBx,src(p53-)三重轉殖基因的母魚過度餵食8週在五個月產生肝癌之動物模式,眼窩注射藥物4週,發現LIB1O0078具有抗肝癌的能力,LIB1O0144抗肝癌效果不如LIB1O0078。毒性測試方面,LIB1O0078和LIB1O0144比Sorafenib造成更低的肝毒性。胚胎毒性方面,LIB1O0078和Sorafenib造成的胚胎毒性跟非常類似,且比LIB1O0144具更低毒性。從我的論文研究中,我們發現了兩種新穎小分子對肝癌生成具有療效,且比美國FDA批准的抗肝癌的藥物(sorafenib)更安全。因此,我們的結果證明,斑馬魚平台的確是發現抗癌新藥物的一種優異模型。
Hepatocellular carcinoma (HCC) ranks as the fifth commonest of malignant tumors worldwide and the third leading cause of cancer-related death. Sorafenib is the first and only FDA-approved multi-kinase inhibitor for the treatment of advanced HCC in 2007, so screening the new drugs for treating HCC is important and urgent. Previously we had established zebrafish HCC models which developed HCC at 11 months. The first part of my thesis was to develop a HCC model which has higher incident and earlier onset. By using diet-induced obesity model, we found HBx and src in the background of p53 mutant triple transgenic female fish could develop HCC at 5 months of stage. This animal model will be used for screening drugs of anti-HCC.
The second part of my thesis was using fli1:EGFP transgenic zebrafish embryos to screen the 560 derivatives of two LIB1F and LIB1O core structures which exhibited anti-angiogenesis effect, and discovered 69 derivatives exhibited anti-angiogenesis effect. Six compounds which did not result in embryo development defect was used for titration to determine their IC50. Two compounds (LIB1O0078 and LIB1O0144) were found having the lowest IC50, and were continued to test their therapeutic effect against liver cancer using transgenic fish, and anti-proliferation and anti-migration ability using xenotransplantation model and their toxicity.
In xenotransplantation assay, LIB1O0078 exhibited better anti-proliferation ability and LIB1O0144 with better anti-migration ability. Using the 5 month old HBx and src in the background of p53 mutant triple transgenic female fish, orbital injection of drugs into blood for 4 weeks, we discovered LIB1O0078 could reverse HCC into normal. The therapeutic effect of LIB1O0144 was lesser than LIB1O0078. In terms of toxicity, LIB1O0078 and LIB1O0144 had lower hepatoxicity than sorafenib. In the survival test, LIB1O0078 and sorafenib had similar and less toxicity than LIB1O0144. From my thesis project, we discovered two novel small molecules which had therapeutic effect on HCC formation and were safer than FDA approved anti-liver cancer drug (sorafenib). Therefore, our data proved that the zebrafish platform was an excellent model for identification of new anti-cancer drugs.
Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1: 229-231
Archambeaud I, Auble H, Nahon P, Planche L, Fallot G, Faroux R, Gournay J, Samuel D, Kury S, Feray C (2015) Risk factors for hepatocellular carcinoma in Caucasian patients with non-viral cirrhosis: the importance of prior obesity. Liver Int 35: 1872-1876
Brechot C (2004) Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology 127: S56-61
Bronte F, Bronte G, Cusenza S, Fiorentino E, Rolfo C, Cicero G, Bronte E, Di Marco V, Firenze A, Angarano G, Fontana T, Russo A (2014) Targeted therapies in hepatocellular carcinoma. Curr Med Chem 21: 966-974
Cabibbo G, Latteri F, Antonucci M, Craxi A (2009) Multimodal approaches to the treatment of hepatocellular carcinoma. Nature clinical practice Gastroenterology & hepatology 6: 159-169
Chen HM, Tsai CH, Hung WC (2015) Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling. Oncotarget 6:14940-52
Cheng AL, Kang YK, Lin DY, Park JW, Kudo M, Qin S, Chung HC, Song X, Xu J, Poggi G, Omata M, Pitman Lowenthal S, Lanzalone S, Yang L, Lechuga MJ, Raymond E (2013) Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 31: 4067-4075
Deng GL, Zeng S, Shen H (2015) Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges. World J Hepatol 7: 787-798
Deryugina EI, Quigley JP (2015) Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 44-46C: 94-112
Ellertsdottir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting HG (2010) Vascular morphogenesis in the zebrafish embryo. Developmental biology 341: 56-65
Fons P, Gueguen-Dorbes G, Herault JP, Geronimi F, Tuyaret J, Frederique D, Schaeffer P, Volle-Challier C, Herbert JM, Bono F (2015) Tumor vasculature is regulated by FGF/FGFR signaling-mediated angiogenesis and bone marrow-derived cell recruitment: this mechanism is inhibited by SSR128129E, the first allosteric antagonist of FGFRs. J Cell Physiol 230: 43-51
Gotink KJ, Verheul HM (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13: 1-14
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496: 498-503
Huang SF, Chen YT, Lee WC, Chang IC, Chiu YT, Chang Y, Tu HC, Yuh CH, Matsuura I, Shih LY, Lai MW, Wu HD, Chen MF, Yeh CT (2014) Identification of transforming hepatitis B virus S gene nonsense mutations derived from freely replicative viruses in hepatocellular carcinoma. PloS One 9: e89753
Kirstein MM, Vogel A (2014) The pathogenesis of hepatocellular carcinoma. Dig Dis 32: 545-553
Konantz M, Balci TB, Hartwig UF, Dellaire G, Andre MC, Berman JN, Lengerke C (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266: 124-137
Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P, Hicklin D, Persaud K, Tonra JR, Witte L, Alitalo K (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67: 593-599
Lafaro KJ, Demirjian AN, Pawlik TM (2015) Epidemiology of hepatocellular carcinoma. Surg Oncol Clin N Am 24: 1-17
Li D, Li XP, Wang HX, Shen QY, Wen L, Qin XJ, Jia QL, Kung HF, Peng Y (2012) VEGF induces angiogenesis in a zebrafish embryo glioma model established by transplantation of human glioma cells. Oncol Rep 28: 937-942
Li Y, Zhang Z, Shi J, Jin L, Wang L, Xu D, Wang FS (2015) Risk factors for naturally-occurring early-onset hepatocellular carcinoma in patients with HBV-associated liver cirrhosis in China. International journal of clinical and experimental medicine 8: 1205-1212
Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48: 1312-1327
Lu JW, Liao CY, Yang WY, Lin YM, Jin SL, Wang HD, Yuh CH (2014) Overexpression of endothelin 1 triggers hepatocarcinogenesis in zebrafish and promotes cell proliferation and migration through the AKT pathway. PloS One 9: e85318
Lu JW, Yang WY, Tsai SM, Lin YM, Chang PH, Chen JR, Wang HD, Wu JL, Jin SL, Yuh CH (2013) Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PloS One 8: e76951
McGlynn KA, Petrick JL, London WT (2015) Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis 19: 223-238
Ochiya T, Takenaga K, Asagiri M, Nakano K, Satoh H, Watanabe T, Imajoh-Ohmi S, Endo H (2015) Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction. Mol Ther Methods Clin Dev 2: 15008
Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T (2010) Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC physiology 10: 21
Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, Donehower RC, Fitch T, Picus J, Erlichman C (2005) Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23: 6657-6663
Poon RT, Fan ST, Lo CM, Ng IO, Liu CL, Lam CM, Wong J (2001) Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years. Ann Surg 234: 63-70
Ray K (2013) Gut microbiota: Obesity-induced microbial metabolite promotes HCC. Nat Rev Gastroenterol Hepatol 10: 442
Rouhi P, Jensen LD, Cao Z, Hosaka K, Lanne T, Wahlberg E, Steffensen JF, Cao Y (2010) Hypoxia-induced metastasis model in embryonic zebrafish. Nature protocols 5: 1911-1918
Sledge GW, Jr. (2005) What is targeted therapy? Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23: 1614-1615
Sun B, Karin M (2012) Obesity, inflammation, and liver cancer. Journal of hepatology 56: 704-713
Tobia C, De Sena G, Presta M (2011) Zebrafish embryo, a tool to study tumor angiogenesis. Int J Dev Biol 55: 505-509
Veinotte CJ, Dellaire G, Berman JN (2014) Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Disease models & mechanisms 7: 745-754
Wallace MC, Preen D, Jeffrey GP, Adams LA (2015) The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Rev Gastroenterol Hepatol 9: 765-779
Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Molecular cancer therapeutics 7: 3129-3140
Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O'Reilly T, Persohn E, Rosel J, Schnell C, Stover D, Theuer A, Towbin H, Wenger F, Woods-Cook K, Menrad A, Siemeister G, Schirner M, Thierauch KH, Schneider MR, Drevs J, Martiny-Baron G, Totzke F (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer research 60: 2178-2189
Zhang B, Xuan C, Ji Y, Zhang W, Wang D (2015) Zebrafish xenotransplantation as a tool for in vivo cancer study. Fam Cancer
Zhang X, Li C, Gong Z (2014) Development of a convenient in vivo hepatotoxin assay using a transgenic zebrafish line with liver-specific DsRed expression. PloS One 9: e91874
Zhao Q, Zhang Y, Guo J, Li J (2015) A novel molecular probe 131I-K237 targeting tumor angiogenesis in human prostate cancer xenografts. Mol Med Rep 12: 1363-1367
Zhu AX (2008) Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 112: 250-259
Han-syuan Lin (2014) Establishment of anti-HCC drug screening platform in zebrafish. Thesis.