簡易檢索 / 詳目顯示

研究生: 曾柏翰
Tseng, Po Han
論文名稱: 利用斑馬魚肝癌模式平台鑑定出兩種抗血管新生、抗增殖及抗轉移的新穎小分子藥物
Identification of two novel small compounds with anti-angiogenesis, anti-proliferation and anti-migration for liver cancer model in zebrafish platform
指導教授: 喻秋華
Yuh, Chiou Hwa
汪宏達
Wang, Horng Dar
口試委員: 李岳倫
Lee, Yueh Luen
謝興邦
Hsieh, Hsing Pang
蕭暉議
Shiao, Hui Yi
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 59
中文關鍵詞: 斑馬魚肝細胞癌藥物篩選
外文關鍵詞: zebrafish, hepatocellular carcinoma, drug screening
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝細胞癌是全世界最常見的惡性腫瘤第五名,同時在癌症死亡率排名第三。蕾莎瓦(Sorafenib)是第一個也是現在唯一被FDA在2007年核准用來治療晚期肝細胞癌的藥物,所以篩選出新穎藥物用於治療肝癌是非常重要且迫切的。先前實驗室已經建立斑馬魚肝癌模型可在11個月產生肝癌,本論文的第一部分為建立一個較高發生率且更早誘發肝癌的模型。藉由過度餵食的方法,我們發現HBx,src(p53-)三重轉殖基因的母魚在過度餵食下可在五個月產生肝癌。這個模式將用於之後篩選抗肝癌藥物之用。
    本論文的第二部分為利用血管螢光魚(fli1:EGFP)胚胎篩選來自生技與藥物研究所提供的小分子藥物庫找出具抑制血管新生作用的小分子藥物。從LIB1F和LIB1O這兩個有抑制血管新生作用的核心結構之560種衍生物,我們發現共69種衍生物具有抑制血管新生的作用。從中挑出六種不會造成胚胎發育缺陷的小分子藥物,發現LIB1O0078和LIB1O0144具有極低的半抑制濃度(IC50),接著測試這兩種藥物在異種移植模式抗癌細胞增生及轉移的能力,及在轉殖基因斑馬魚治療肝癌的能力。我們也測試這兩種藥物的肝毒性,以及對胚胎毒性。
    我們發現LIB1O0078具有較佳的抗癌細胞增生的能力,而LIB1O0144抗癌細胞轉移的能力較好。接著我們利用HBx,src(p53-)三重轉殖基因的母魚過度餵食8週在五個月產生肝癌之動物模式,眼窩注射藥物4週,發現LIB1O0078具有抗肝癌的能力,LIB1O0144抗肝癌效果不如LIB1O0078。毒性測試方面,LIB1O0078和LIB1O0144比Sorafenib造成更低的肝毒性。胚胎毒性方面,LIB1O0078和Sorafenib造成的胚胎毒性跟非常類似,且比LIB1O0144具更低毒性。從我的論文研究中,我們發現了兩種新穎小分子對肝癌生成具有療效,且比美國FDA批准的抗肝癌的藥物(sorafenib)更安全。因此,我們的結果證明,斑馬魚平台的確是發現抗癌新藥物的一種優異模型。


    Hepatocellular carcinoma (HCC) ranks as the fifth commonest of malignant tumors worldwide and the third leading cause of cancer-related death. Sorafenib is the first and only FDA-approved multi-kinase inhibitor for the treatment of advanced HCC in 2007, so screening the new drugs for treating HCC is important and urgent. Previously we had established zebrafish HCC models which developed HCC at 11 months. The first part of my thesis was to develop a HCC model which has higher incident and earlier onset. By using diet-induced obesity model, we found HBx and src in the background of p53 mutant triple transgenic female fish could develop HCC at 5 months of stage. This animal model will be used for screening drugs of anti-HCC.
    The second part of my thesis was using fli1:EGFP transgenic zebrafish embryos to screen the 560 derivatives of two LIB1F and LIB1O core structures which exhibited anti-angiogenesis effect, and discovered 69 derivatives exhibited anti-angiogenesis effect. Six compounds which did not result in embryo development defect was used for titration to determine their IC50. Two compounds (LIB1O0078 and LIB1O0144) were found having the lowest IC50, and were continued to test their therapeutic effect against liver cancer using transgenic fish, and anti-proliferation and anti-migration ability using xenotransplantation model and their toxicity.
    In xenotransplantation assay, LIB1O0078 exhibited better anti-proliferation ability and LIB1O0144 with better anti-migration ability. Using the 5 month old HBx and src in the background of p53 mutant triple transgenic female fish, orbital injection of drugs into blood for 4 weeks, we discovered LIB1O0078 could reverse HCC into normal. The therapeutic effect of LIB1O0144 was lesser than LIB1O0078. In terms of toxicity, LIB1O0078 and LIB1O0144 had lower hepatoxicity than sorafenib. In the survival test, LIB1O0078 and sorafenib had similar and less toxicity than LIB1O0144. From my thesis project, we discovered two novel small molecules which had therapeutic effect on HCC formation and were safer than FDA approved anti-liver cancer drug (sorafenib). Therefore, our data proved that the zebrafish platform was an excellent model for identification of new anti-cancer drugs.

    誌謝 I Abbreviations list II 中文摘要 III Abstract IV Table of contents V Chapter 1 Introduction 1 1.1 Hepatocellular carcinoma 1 1.1.1 Risk factors 1 1.1.2 Pathogenesis 1 1.1.3 Treatments 2 1.1.4 Targeted therapies 2 1.2 Zebrafish models 3 1.2.1 Advantages 3 1.2.2 Transgenic lines used in this thesis 4 1.2.3 Angiogenesis 4 1.2.4 Diet induced obesity and hepatocarcinogenesis 5 1.2.5 Xenotransplantation model 6 1.3 Testing drug and clinical drug for targeted therapy 7 1.3.1 LIB1O,LIB1F derivatives and PTK787 7 1.3.2 Drug for targeted therapy 8 Chapter 2 Materials and Methods 10 2.1 Transgenic zebrafish lines 10 2.2 Zebrafish maintenance 10 2.3 Embryos collection 10 2.4 Procedure of diet-induced obesity 11 2.5 Angiogenesis inhibition drug screening platform 11 2.6 Titration of the compounds concentration 11 2.7 Sources of compounds 11 2.8 Liver tissue collection and paraffin section 12 2.9 Total RNA isolation 12 2.10 Cell culture 13 2.11 Hepatotoxicity test 13 2.12 Survival test 14 2.13 Reverse transcription-polymerase chain reaction (RT-PCR) 14 2.14 Quantitative polymerase chain reaction (Q-PCR) 15 2.15 Xenotransplantation assay 16 2.16 Retro orbital injection (RO injection) 16 2.17 Statistical analysis 17 Experimental Flowchart 18 Chapter 3 Results 19 3.1 Overfeeding induces HCC formation in HBx, src, p53 mutant triple transgenic fish 19 3.2 Screening 560 of LIB1O and LIB1F derivatives 20 3.3 Determine the half maximal inhibitory concentration (IC50) for six selected compounds 21 3.4 Determine the survival curve for LIB1O0078 and LIB1O0144 22 3.5 LIB1O0078 exhibited anti-proliferation and LIB1O0144 with anti-migration ability in xenotransplantation assay 22 3.6 LIB1O0078 could prevent the HCC in diet-induced obesity of HBx,src(p53-)triple transgenic fish 23 3.7 LIB1O0078 and LIB1O0144 might have lower liver toxicity than sorafenib 24 Summary 26 Chapter 4 Discussion 27 Figures 30 Figure 1. Body weight, RNA expression level and HE stain of HBx, Src(p53-) triple transgenic fish with normal diet/overfed for 8 or 16 weeks. 31 Figure 2. Anti-angiogenesis effect of LIB1O derivatives. 33 Figure 3. Anti-angiogenesis effect of LIB1F derivatives. 35 Figure 4. Titrations of LIB1O0078, and determine the half inhibition concentration for anti-angiogenesis. 37 Figure 5. Titrations of LIB1O0144, and determine the half inhibition concentration for anti-angiogenesis. 39 Figure 6. Titrations of LIB1F0069, and determine the half inhibition concentration for anti-angiogenesis. 41 Figure 7 Titrations of LIB1F0191, and determine the half inhibition concentration for anti-angiogenesis. 43 Figure 8. Determine LC50 of LIB1O0078 and LIB1O0144. 45 Figure 9. Comparing the anti-proliferation and anti-migration ability of LIB1O0078, LIB1O0144 with Sorafenib by xenotransplantation assay. 47 Figure 10. QPCR analysis and H&E stain of the liver tissue after DMSO, sorafenib, LIB1O0078 and LIB1O0144 treatment. 49 Figure 11. Representative H&E stain images of the liver tissue after DMSO, sorafenib, LIB1O0078 and LIB1O0144 treatment. 51 Figure 12. Tg(fabp10a:GFP-mCherry) embryos treated with LIB1O0078, LIB1O0144, and Sorafenib and observe RFP intensity and liver size at 5 dpf to determine their hepatotoxicity. 53

    Amatruda JF, Shepard JL, Stern HM, Zon LI (2002) Zebrafish as a cancer model system. Cancer Cell 1: 229-231

    Archambeaud I, Auble H, Nahon P, Planche L, Fallot G, Faroux R, Gournay J, Samuel D, Kury S, Feray C (2015) Risk factors for hepatocellular carcinoma in Caucasian patients with non-viral cirrhosis: the importance of prior obesity. Liver Int 35: 1872-1876

    Brechot C (2004) Pathogenesis of hepatitis B virus-related hepatocellular carcinoma: old and new paradigms. Gastroenterology 127: S56-61

    Bronte F, Bronte G, Cusenza S, Fiorentino E, Rolfo C, Cicero G, Bronte E, Di Marco V, Firenze A, Angarano G, Fontana T, Russo A (2014) Targeted therapies in hepatocellular carcinoma. Curr Med Chem 21: 966-974

    Cabibbo G, Latteri F, Antonucci M, Craxi A (2009) Multimodal approaches to the treatment of hepatocellular carcinoma. Nature clinical practice Gastroenterology & hepatology 6: 159-169

    Chen HM, Tsai CH, Hung WC (2015) Foretinib inhibits angiogenesis, lymphangiogenesis and tumor growth of pancreatic cancer in vivo by decreasing VEGFR-2/3 and TIE-2 signaling. Oncotarget 6:14940-52

    Cheng AL, Kang YK, Lin DY, Park JW, Kudo M, Qin S, Chung HC, Song X, Xu J, Poggi G, Omata M, Pitman Lowenthal S, Lanzalone S, Yang L, Lechuga MJ, Raymond E (2013) Sunitinib versus sorafenib in advanced hepatocellular cancer: results of a randomized phase III trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 31: 4067-4075

    Deng GL, Zeng S, Shen H (2015) Chemotherapy and target therapy for hepatocellular carcinoma: New advances and challenges. World J Hepatol 7: 787-798

    Deryugina EI, Quigley JP (2015) Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol 44-46C: 94-112

    Ellertsdottir E, Lenard A, Blum Y, Krudewig A, Herwig L, Affolter M, Belting HG (2010) Vascular morphogenesis in the zebrafish embryo. Developmental biology 341: 56-65

    Fons P, Gueguen-Dorbes G, Herault JP, Geronimi F, Tuyaret J, Frederique D, Schaeffer P, Volle-Challier C, Herbert JM, Bono F (2015) Tumor vasculature is regulated by FGF/FGFR signaling-mediated angiogenesis and bone marrow-derived cell recruitment: this mechanism is inhibited by SSR128129E, the first allosteric antagonist of FGFRs. J Cell Physiol 230: 43-51

    Gotink KJ, Verheul HM (2010) Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 13: 1-14

    Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W, Kilian B, Quintais LT, Guerra-Assuncao JA, Zhou Y, Gu Y, Yen J, Vogel JH, Eyre T, Redmond S, Banerjee R, Chi J, Fu B, Langley E, Maguire SF, Laird GK, Lloyd D, Kenyon E, Donaldson S, Sehra H, Almeida-King J, Loveland J, Trevanion S, Jones M, Quail M, Willey D, Hunt A, Burton J, Sims S, McLay K, Plumb B, Davis J, Clee C, Oliver K, Clark R, Riddle C, Elliot D, Threadgold G, Harden G, Ware D, Begum S, Mortimore B, Kerry G, Heath P, Phillimore B, Tracey A, Corby N, Dunn M, Johnson C, Wood J, Clark S, Pelan S, Griffiths G, Smith M, Glithero R, Howden P, Barker N, Lloyd C, Stevens C, Harley J, Holt K, Panagiotidis G, Lovell J, Beasley H, Henderson C, Gordon D, Auger K, Wright D, Collins J, Raisen C, Dyer L, Leung K, Robertson L, Ambridge K, Leongamornlert D, McGuire S, Gilderthorp R, Griffiths C, Manthravadi D, Nichol S, Barker G, Whitehead S, Kay M, Brown J, Murnane C, Gray E, Humphries M, Sycamore N, Barker D, Saunders D, Wallis J, Babbage A, Hammond S, Mashreghi-Mohammadi M, Barr L, Martin S, Wray P, Ellington A, Matthews N, Ellwood M, Woodmansey R, Clark G, Cooper J, Tromans A, Grafham D, Skuce C, Pandian R, Andrews R, Harrison E, Kimberley A, Garnett J, Fosker N, Hall R, Garner P, Kelly D, Bird C, Palmer S, Gehring I, Berger A, Dooley CM, Ersan-Urun Z, Eser C, Geiger H, Geisler M, Karotki L, Kirn A, Konantz J, Konantz M, Oberlander M, Rudolph-Geiger S, Teucke M, Lanz C, Raddatz G, Osoegawa K, Zhu B, Rapp A, Widaa S, Langford C, Yang F, Schuster SC, Carter NP, Harrow J, Ning Z, Herrero J, Searle SM, Enright A, Geisler R, Plasterk RH, Lee C, Westerfield M, de Jong PJ, Zon LI, Postlethwait JH, Nusslein-Volhard C, Hubbard TJ, Roest Crollius H, Rogers J, Stemple DL (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496: 498-503

    Huang SF, Chen YT, Lee WC, Chang IC, Chiu YT, Chang Y, Tu HC, Yuh CH, Matsuura I, Shih LY, Lai MW, Wu HD, Chen MF, Yeh CT (2014) Identification of transforming hepatitis B virus S gene nonsense mutations derived from freely replicative viruses in hepatocellular carcinoma. PloS One 9: e89753

    Kirstein MM, Vogel A (2014) The pathogenesis of hepatocellular carcinoma. Dig Dis 32: 545-553

    Konantz M, Balci TB, Hartwig UF, Dellaire G, Andre MC, Berman JN, Lengerke C (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266: 124-137

    Laakkonen P, Waltari M, Holopainen T, Takahashi T, Pytowski B, Steiner P, Hicklin D, Persaud K, Tonra JR, Witte L, Alitalo K (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67: 593-599

    Lafaro KJ, Demirjian AN, Pawlik TM (2015) Epidemiology of hepatocellular carcinoma. Surg Oncol Clin N Am 24: 1-17

    Li D, Li XP, Wang HX, Shen QY, Wen L, Qin XJ, Jia QL, Kung HF, Peng Y (2012) VEGF induces angiogenesis in a zebrafish embryo glioma model established by transplantation of human glioma cells. Oncol Rep 28: 937-942

    Li Y, Zhang Z, Shi J, Jin L, Wang L, Xu D, Wang FS (2015) Risk factors for naturally-occurring early-onset hepatocellular carcinoma in patients with HBV-associated liver cirrhosis in China. International journal of clinical and experimental medicine 8: 1205-1212

    Llovet JM, Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48: 1312-1327

    Lu JW, Liao CY, Yang WY, Lin YM, Jin SL, Wang HD, Yuh CH (2014) Overexpression of endothelin 1 triggers hepatocarcinogenesis in zebrafish and promotes cell proliferation and migration through the AKT pathway. PloS One 9: e85318

    Lu JW, Yang WY, Tsai SM, Lin YM, Chang PH, Chen JR, Wang HD, Wu JL, Jin SL, Yuh CH (2013) Liver-specific expressions of HBx and src in the p53 mutant trigger hepatocarcinogenesis in zebrafish. PloS One 8: e76951

    McGlynn KA, Petrick JL, London WT (2015) Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clin Liver Dis 19: 223-238

    Ochiya T, Takenaga K, Asagiri M, Nakano K, Satoh H, Watanabe T, Imajoh-Ohmi S, Endo H (2015) Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction. Mol Ther Methods Clin Dev 2: 15008

    Oka T, Nishimura Y, Zang L, Hirano M, Shimada Y, Wang Z, Umemoto N, Kuroyanagi J, Nishimura N, Tanaka T (2010) Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC physiology 10: 21

    Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, Donehower RC, Fitch T, Picus J, Erlichman C (2005) Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23: 6657-6663

    Poon RT, Fan ST, Lo CM, Ng IO, Liu CL, Lam CM, Wong J (2001) Improving survival results after resection of hepatocellular carcinoma: a prospective study of 377 patients over 10 years. Ann Surg 234: 63-70

    Ray K (2013) Gut microbiota: Obesity-induced microbial metabolite promotes HCC. Nat Rev Gastroenterol Hepatol 10: 442

    Rouhi P, Jensen LD, Cao Z, Hosaka K, Lanne T, Wahlberg E, Steffensen JF, Cao Y (2010) Hypoxia-induced metastasis model in embryonic zebrafish. Nature protocols 5: 1911-1918

    Sledge GW, Jr. (2005) What is targeted therapy? Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23: 1614-1615

    Sun B, Karin M (2012) Obesity, inflammation, and liver cancer. Journal of hepatology 56: 704-713

    Tobia C, De Sena G, Presta M (2011) Zebrafish embryo, a tool to study tumor angiogenesis. Int J Dev Biol 55: 505-509

    Veinotte CJ, Dellaire G, Berman JN (2014) Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era. Disease models & mechanisms 7: 745-754

    Wallace MC, Preen D, Jeffrey GP, Adams LA (2015) The evolving epidemiology of hepatocellular carcinoma: a global perspective. Expert Rev Gastroenterol Hepatol 9: 765-779

    Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Molecular cancer therapeutics 7: 3129-3140

    Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O'Reilly T, Persohn E, Rosel J, Schnell C, Stover D, Theuer A, Towbin H, Wenger F, Woods-Cook K, Menrad A, Siemeister G, Schirner M, Thierauch KH, Schneider MR, Drevs J, Martiny-Baron G, Totzke F (2000) PTK787/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer research 60: 2178-2189

    Zhang B, Xuan C, Ji Y, Zhang W, Wang D (2015) Zebrafish xenotransplantation as a tool for in vivo cancer study. Fam Cancer

    Zhang X, Li C, Gong Z (2014) Development of a convenient in vivo hepatotoxin assay using a transgenic zebrafish line with liver-specific DsRed expression. PloS One 9: e91874

    Zhao Q, Zhang Y, Guo J, Li J (2015) A novel molecular probe 131I-K237 targeting tumor angiogenesis in human prostate cancer xenografts. Mol Med Rep 12: 1363-1367

    Zhu AX (2008) Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 112: 250-259

    Han-syuan Lin (2014) Establishment of anti-HCC drug screening platform in zebrafish. Thesis.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE