研究生: |
章筑嫻 |
---|---|
論文名稱: |
半線性橢圓特徵植問題的分歧問題探討 Numerical Investigation for the Bifurcation Problems of Semi-linear Elliptic Eigenvalue Problems |
指導教授: | 簡國清 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 61 |
中文關鍵詞: | 分歧點 、中央有限差分法 、切線預測法 、牛頓迭代法 、隱函數定理 、割線預測法 、虛擬弧長延拓法 |
外文關鍵詞: | Bifurcation point, Central difference method, Tangent predictor, Newton iterative method, Implicit function theorem, Secant predictor, Pseudo-arclength continuation method |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文將利用中央有限差分法、切線預測法、牛頓迭代法、隱函數定理、割線預測法、有限維度 Liapunov-Schmidt 降階法及虛擬弧長延拓法等數值方法,來獲得半線性橢圓特徵方程組之解路徑。其中,虛擬弧長延拓法能順利通過轉彎點、跳過分歧點,延拓出模型的解路徑來。本文之主要目的在於探討兩個半線性橢圓方程組多重解的存在,並歸納半線性橢圓特徵值問題解的特性。
In this paper, we use the central difference method, tangent predictor, Newton iterative method, implicit function theorem, Secant Predictor , finite dimensional Liapunov-Schmidt reduction method and pseudo-arclength continuation method to obtain the solution path of the semi-linear elliptic eigenvalue problems. The pseudo-arclength continuation can pass through turning points and bifurcation points to continue all solution. We investigate the existence of multiple solutions of two semi-linear systems of elliptic eigenvalue equations and analyze the behavior of branches of the solution path.
參考文獻
[1] Böhmer, K. E., and Mei Z., Mode Interactions of an Elliptic System on the Square, International Series of Numerical Mathematic, Vol. 104, , Verlag Basel, (1992).
[2] Chien C. S., Mei Z., and Shen C. L., Numerical Continuation at Double Bifurcation Points of a Reaction Diffusion Problem, International Journal of Bifurcation and Chaos, Vol. 8, No.1, 117-139, (1997).
[3] Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340,(1971).
[4] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P. H. Rabinowitz, Academic Press, pp. 1-35,(1977).
[5] Crandall, M. G. and Rabinowitz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series,(1979).
[6] Jepson, A. D. and Spence, A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell,(1987).
[7] Keller, H. B. and Langford, W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems,Arch. Rational Mech.Anal.,48, 83-108(1972).
[8] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, (1977).
[9] Keller, H. B., in “Recent Advances in Numerical Analysis”, Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p.73, (1978).
[10] Keller, H. B. Lectures on Numerical Methods in Bifurcation Problems,TATA Institute of Fundamental Research , Springer-Verlag, (1987).
[11] Kubiček, M. and Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, (1983).
[12] McKenna P. j. and Walter W., On the Mulitiplicity of the Solution Set of Some Nonlinear Boundary Value Problems. Nonlinear Analysis 8, pp.893-907, (1984).
[13] Reiss, E. L., Bauer, L. and Keller, H. B., Mutiple eigenvalues lead to secondary bifurcation, SIAM J. Appl. Math. 17, 101-122, (1975).
[14] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley(New York).
[15]雷晉干和馬亞南著,分歧問題的逼近理論與數值方法,武漢大學,中國,西元一九九二年八月。