簡易檢索 / 詳目顯示

研究生: 呂學昊
Lu, Hsueh-Hao
論文名稱: 一維淬火動力學系統在R-L基底的糾纏熵相變
Entanglement Transition of Quench Dynamics in Biorthogonal basis
指導教授: 張博堯
Chang,Po-Yao
口試委員: 陳柏中
CHEN, PO-CHUNG
黃一平
Huang, Yi-Ping
江府峻
伊恩.麥克庫洛奇
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 80
中文關鍵詞: 非厄米宇稱-時間對稱糾纏熵淬火動力學相變
外文關鍵詞: non-Hermitian, Quench Dynamics, Entanglement Entropy, Biorthogonal , PT-symmetric
相關次數: 點閱:35下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前人研究已證實,具備宇稱-時間(PT)對稱之非厄米哈密頓量在淬滅動力
    學中會因能級交叉而產生糾纏轉變。本論文系統性地運用雙正交右–左(R-L)
    基底,深入探討PT對稱非厄米淬滅動力學中糾纏熵、物理可觀測量與量子幾何
    的演化行為。研究結果揭示自由費米子系統與交互作用費米子系統之間的本質
    差異:
    1. 自由系統
    約化密度矩陣保持高斯形式,並可分解為相互解耦的2×2 子空間,導致本
    徵值呈譜配對(spectral pairing),使糾纏熵隨時間線性增長。
    2. 交互作用系統
    交互作用破壞了上述對稱性。透過微擾分析,我們發現交互作用誘導的四
    次項耦合了先前獨立的模態,將有效子空間擴展至4×4,因而使糾纏熵呈
    指數增長。
    此外,本論文並透過對Yang-Lee mode 和非厄米Su–Schrieffer–Heeger (SSH)
    modell 的詳細研究,進一步佐證上述發現,從而建立非厄米淬滅動力學、糾纏
    尺度行為與相變之間的直接關聯。這些發現凸顯了譜結構在主導糾纏動力學中
    的關鍵作用,並為深入理解交互作用、對稱破缺與非厄米多體系統行為間的相
    互影響提供了新的視角。


    Previous studies have demonstrated that the quench dynamics of parity-time
    (PT)-symmetric non-Hermitian Hamiltonians exhibit entanglement transitions drivenby level crossings. In this thesis, we extend these analyses by systematically investigating the evolution of entanglement entropy, physical observables, and quantum geometry in PT-symmetric non-Hermitian quench dynamics using the biorthogonal right–left (R-L) basis. Our results reveal a fundamental distinction between free and interacting fermionic systems. In free systems, the reduced density matrix retains a Gaussian form that factorizes into decoupled 2 × 2 subspaces, resulting in a spectral pairing of eigenvalues that yields a linear time growth of entanglement entropy. In contrast, the introduction of interactions breaks this symmetry. Through a perturbative analysis, we demonstrate that the interaction-induced quartic terms couple previously independent modes, enlarging the effective sub-space to 4 × 4 and leading to an exponential increase in entanglement entropy. We corroborate these findings through detailed studies on the Yang–Lee modeland the non-Hermitian Su–Schrieffer–Heeger (SSH) model, thereby establishing a direct link between non-Hermitian quench dynamics, entanglement scaling, and phase transitions. These insights underscore the pivotal role of spectral structure in governing entanglement dynamics and provide a deeper understanding of the interplay between interactions, symmetry breaking, and the behavior of non-Hermitian many-body systems.

    QR CODE