簡易檢索 / 詳目顯示

研究生: 黃承揚
Huang, Chen-yang
論文名稱: 自我複製式光子晶體與微反射鏡陣列應用於發光二極體以提升光汲取效率之研究
Light extraction enhancement for InGaN/GaN LED by auto-cloned photonics crystal and micro mirror array
指導教授: 趙煦
Chao, Shiuh
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 94
中文關鍵詞: 自我複製式光子晶體微反射鏡陣列發光二極體有限時域差分法橫向磊晶
外文關鍵詞: auto-cloned photonic crystal, micro mirror array, light emitting diode, finite difference time domain, epitaxial lateral overgrowth
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出幾種結構來改善氮化鎵發光二極體之光汲取效率,主要藉由自我複製式光子晶體(auto-cloned photonic crystal,簡稱APhC),與微反射鏡陣列結構(micro mirror array,簡稱MMA),來提升發光二極體之光汲取效率。
    使用有限時域差分法(finite difference time domain,簡稱FDTD),模擬自我複製式光子晶體發光二極體,與微反射鏡陣列發光二極體之光汲取效率分析。藉由光子晶體之反射與繞射特性,可回收發光二極體背部光線,同時導正因為全反射特性無法出光的光線進入發光二極體出光錐體內(escape cone)。
    以薄膜成長理論詳述自我複製式光子晶體的成長機制。模擬薄膜材料在沉積與蝕刻相互調配下,可將薄膜堆疊成多層鋸齒狀分佈,即為自我複製式光子晶體結構。同時,實驗製鍍Ta2O5/SiO2多層膜堆疊在圖案化藍寶石基板上(pattern sapphire substrate),調變射頻偏壓(radio frequency,簡稱RF)功率,可影響鋸齒狀堆疊特性,此實驗結果與模擬可以相互呼應。操作優化後之射頻偏壓功率30~45W,可堆疊61層之Ta2O5/SiO2鋸齒狀多層膜,仍能維持鋸齒狀角度與形狀結構。
    製作自我複製式光子晶體發光二極體(auto-cloned photonic crystal LED,簡稱APhC LED),藉由光子晶體之反射與繞射特性回收背部光線,提升光汲取效率。自我複製式光子晶體發光二極體相較於傳統發光二極體有97%光提升效果,也比背部製作反射鏡的發光二極體(Bragg reflector LED,簡稱BR LED),提升22%光汲取效果。此種結構優點在於光子晶體可以用薄膜濺鍍方式大面積製作於發光二極體之背部,且不侵入磊晶層結構,亦不干擾晶粒電性製程,即可單純提升發光二極體出光亮度。
    以橫向磊晶技術(Epitaxial lateral overgrowth,簡稱ELOG)埋崁微反射鏡陣列於發光二極體內部,提升發光二極體光汲取效率。在此之前,需測試陣列式薄膜對於高溫磊晶環境的耐受程度。結果可知週期6□m、間距3□m、10層之Ta2O5/SiO2多層膜微反射鏡,經過1200oC高溫耐受實驗後不會有任何剝落與損壞,且仍能維持高反射率。可將微反射鏡陣列相融於磊晶製程條件當中。
    具有內埋式反射鏡陣列之發光二極體,相較於一般發光二極體具107%光汲取效率,也比圖案化SiO2陣列發光二極體(patterned SiO2 array LED,簡稱P-SiO2 LED)提升36.4 %的光汲取效果。此結構具有三項特點來提升出光亮度的功能。第一利用反射鏡當作阻擋層(mask),抑制磊晶線差排缺陷(threading dislocation defect)向上延伸至主動發光層,提升內部量子效應。第二反射鏡陣列埋堪於GaN內部,如同將反射元件放置在離主動發光區不到3□m的距離內,直接反射背部光線朝向正面出光。第三該三角形陣列排置方式兼具繞射特性,可將發光二極體內部因為全反射侷限之光線,藉由多階繞射光束導正至出光錐體內。
    本篇論文研究,主要以光學薄膜製作自我複製式光子晶體與微反射鏡陣列。並藉由該元件的反射特性,讓發光二極體背部光線反射朝向正面出射。同時繞射特性破壞內部全反射效應,取出被侷限在發光二極體內部之光線,提升出光亮度。


    In this dissertation, we present several types of light extraction enhancement structures on the backside of light emitting diodes (LEDs) to enhance the efficiency of light output. The first one is auto-cloned photonics crystal (APhC) on the backside of the sapphire wafer of the LED substrate, and the second one is micro mirror array (MMA) structure which was embedded in the gallium nitride (GaN) LED mainbody by the fabrication process of epitaxial lateral overgrowth (ELOG).
    The first section of the dissertation is related to research of the APhC. Based on the theory of thin film growth, we simulated the growth of the auto-cloned Ta2O5/SiO2 multi-layer photonic crystal with a lateral saw-tooth period under the mechanism of deposition and etching. Ion-beam-sputter (IBS) was applied to deposit the films and RF-bias etching was applied simultaneously with the IBS on the Ta2O5 film. Both simulation and experiment results showed that the quality of the auto cloning can be optimized and well controlled by the RF-bias power. There exists an intermediate power range, within this range, the drop of peak to valley height variation of the saw-tooth profile can be reduced significantly to achieve high degree of auto-cloning. Analysis showed that simultaneous deposition and etching at the proper RF-bias power on the Ta2O5 has the capability to compensate the flattening effect of the SiO2 deposition such that the saw-tooth surface profile can be maintained.
    In the second section of the dissertation, we introduce the fabrication of three dimensional (3-D) APhC of Ta2O5/SiO2 multi-layers on the backside of the sapphire wafer that has InGaN/GaN multi-quantum wells (MQWs) LED on the front side. 94% light extraction enhancement in comparison to the LED without APhC was obtained. Electrical properties of the LED did not affected by the APhC and its fabrication process. Experimental evidences showed that light extraction enhancement mechanism is in two aspects: for rays that are emitted from the source and incident at lower angle of incidence to the APhC, the APhC acts as a high reflector; for rays incident at higher angle of incidence to the APhC, first order diffracted light from the APhC appears, the diffracted light is concentrated around the surface normal and is therefore capable of escaping.
    In the third section of the dissertation, we propose a light extraction enhancement structure by using the heat-resistive dielectric MMA embedding in the ELOG GaN. Taking advantages of reducing dislocation density by ELOG together with the capability of diffraction and high reflectance of the patterned structure from the MMA, higher light output power for the LED can be expected. The MMA of Ta2O5/SiO2 dielectric multi-layer with the mirror diameter of 3□m and the array period of 6□m was fabricated on c-plane sapphire substrate. ELOG of GaN was applied to the MMA that was deposited on both sapphire and sapphire with 2.56□m GaN template. The MMA was subjected to 1200oC high temperature annealing and remained intact with high reflectance in contrast to the continuous multi-layer for which the layers have undergone severe damage by 1200oC annealing. The result implies that our MMA is compatible to the high temperature MOCVD growth environment of GaN.
    In the final section of the dissertation, we propose fabrication of MQWs InGaN/GaN LEDs, 300□m □ 300□m chip size, with Ta2O5/SiO2 dielectric multi-layer MMA embedded in the ELOG GaN on the c-plane sapphire substrate. MQWs InGaN/GaN LEDs with ELOG embedded patterned SiO2 array (P-SiO2) of the same dimension as the MMA were also fabricated for comparison. Dislocation density was reduced for the ELOG samples. 75.2% light extraction enhancement for P-SiO2-LED and 102.6% light extraction enhancement for the MMA-LED were obtained over the standard LED. We demonstrated that the trapped lights can be redirected from the MMA by multiple-diffraction to escape from the LED. Therefore, the light extraction can be enhanced.

    Abstract...vi Acknowledgements ...viii Contents ... ix Table Captions...xii Figure Captions...xiii Symboles... xx 1 Introduction...1 1.1 Improvement of the LED light extraction...1 1.2 Auto-cloned photonic crystal...3 1.3 Light extraction enhancement for GaN-based LED by auto-cloned photonics crystal...6 1.4 Epitaxial lateral overgrowth...6 1.5 GaN-based LED with embedded micro-mirror array in the ELOG GaN...8 1.6 Outline of thesis...10 2 Modeling and Simulation...11 2.1 Simulation of the saw-tooth multilayer stacks of the auto-cloned photonic crystal...11 2.1.1 Deposition and etching model...12 2.1.2 Deposition rate and etching rate vs. inclination angle...13 2.1.3 Operational analysis and calculation algorithm...15 2.1.4 Analysis of the re-shaping process...17 2.1.5 Analysis of the auto-cloned multilayer process...18 2.2 Simulation of the LEDs Light Extraction Enhancement by the Finite Difference Time Domain Method...20 2.2.1 Numerical analysis of the LED light extraction enhancement with auto-cloned photonics crystal...22 2.2.2 Numerical analysis of the LED light extraction enhancement with embedded micro APhCs array...24 3 Fabrication of the APhC-LED and MMA-LED...27 3.1 Fabrication of auto-cloned photonic crystal...27 3.1.1 Two-dimensional saw-tooth patterned sapphire by using laser interference lithography...28 3.1.2 Fabrication of auto-cloned photonic crystal...29 3.2 Fabrication of the three dimensional auto-cloned photonic crystal LED ...39 3.3 Fabrication of the micro mirror array...42 3.4 Fabrication of the micro mirror array LED...44 3.4.1 Embedding the MMA in the ELOG GaN...45 3.4.2 Epitaxial growth of the MMA LED...46 4 Results and discussion...50 4.1 Influence of the RF bias power on the shape of the APhC saw-tooth multilayer stack...50 4.2 Device characteristics of the APhC-LED...53 4.2.1 Electrical and optical properties of the APhC-LED...54 4.2.2 Far-field pattern of the APhC-LED...55 4.2.3 The mechanism for light extraction enhancement of the APhC-LED...57 4.3 Micro-mirror array annealing and results...63 4.4 Device characteristics of the MMA-LED...67 4.4.1 The epi-film characteristics of the ELOG embedding the MMA and patterned SiO2 array...68 4.4.2 Electrical and optical properties of the MMA-LED and P- SiO2-LED...70 4.4.3 Far-field pattern of the MMA-LED...71 4.4.4 The mechanism for light extraction enhancement of the MMA-LED...73 5 Conclusions and Future works...78 5.1 Conclusions...78 5.2 Future works...80 Bibliography...83 List of Publications...90

    1.J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminesence in GaN,” J. of Luminescence 4, 63-66 (1971).
    2.J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN blue light-emitting diodes,” J. of Luminescence 5, 84-86 (1972).
    3.J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN yellow light-emitting diodes,” J. of Luminescence 6, 54-60 (1973).
    4.J. I. Pankove, M. T. Duffy, E. A. Miller, and J. E. Berkeyheiser, “Luminescence of insulating Be-doped and Li-doped GaN,” J. of Luminescence 8, 89-93 (1973).
    5.T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch, “Omnidirectional reflective contacts for light-emitting diodes,” IEEE Electron Device Lett. 24, 683-685 (2003).
    6.J. K. Kim, T. Gessmann, H. Luo, and E. F. Schubert, “GaInN light-emitting diodes with RuO2/SiO2/Ag omni-directional reflector,” Appl. Phys. Lett. 84, 4508-4510 (2004).
    7.H. Ishikawa, B. Zhang, K. Asano, T. Egawa, and T. Jimbo, “Characterization of GaInN light-emitting diodes with distributed Bragg reflector grown on Si,” J. Cryst. Growth 272, 322-326 (2004).
    8.Y. S. Zhao, D. L. Hibbard, H. P. Lee, K. Ma, W. So, and H. Liu, “Efficiency enhancement of InGaN/GaN light-emitting diodes with a back-surface distributed Bragg reflector,” J. of Electronic Materials 32 1523-1526 (2003).
    9.J. H. Seo, and J. H. Jang, “Nitride semiconductor light emitting diode and fabrication method thereof,” US patent 20050133796A1 (2005).
    10.J.Q. Xi, H. Luo, A. J. Pasquale, J. K. Kim, and E. F. Schubert, “Enhanced light extraction in GaInN light-emitting diode with pyramid reflector,” IEEE Photonic Tech. Lett. 18, 2347-2349 (2006).
    11.H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett. 84, 457-459 (2004).
    12.E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    13.S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
    14.Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282 1679-1682 (1998).
    15.S. Y Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282 275-276 (1998).
    16.Shawn-Yu Lin, V. M. Hietala, Li Wang, and E. D. Jones, “Highly dispersive photonic band-gap prism”, Opts. Letts. 21, 1771-1773, (1996).
    17.H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering”, Applied Phys. Lett. 74 (10), 1370-1372 (1999).
    18.O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. OBrien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser”, Science 284, 1819-1821, (1999)
    19.K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. DenBaars, J. S. Speck,C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Applied Phys. Lett. 93 (10), 103502 (2008).
    20.S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293 (10), 1123-1125 (2001).
    21.Hatice Altug and Jelena Vuckovic, “Polarization control and sensing with two dimensional coupled photonic crystal micro-cavity arrays,” Optics Lett. 30 9, 982-984 (2005).
    22.J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Applied Phys. Lett. 84 (19), 3885-3887 (2004).
    23.S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinanl, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science 289 604-606 (2000).
    24.A. A. Zakhidov, R. H. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. O. Dantas, J. Marti, and V. G. Ralchenko, “Carbon structures with three-dimensional periodicity at optical wavelengths,” Science 282, 897-901 (1998).
    25.S. Kawakami, “Fabrication of submicrometer 3D periodic structures composed of Si/SiO2,” Electronics Letters, 33, 1260-1261, (1997).
    26.Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, “Photonic crystal polarization splitters,” Electronics Letters 35 15, 1271-1272, (1999).
    27.M. Notomi, T. Tamamura, T. Kawashima, and S. Kawakami, “Drilled alternating-layer three-dimensional photonic crystals having a full photonic band gap,” Appl. Phys Lett. 77 (26), 4256-4258, (2000).
    28.C. K. Hsu provides communication to be published.
    29.C. Y. Ting, V. J. Vivalda, and H. G. Schaefer, “Study of planarized sputter-deposited SiO2,” J. Vac. Sci. Technol. 15(3), 1105-1112, (1978).
    30.S. Kawakami, T. Kawashima, and T. Sato, “Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering,” Appl. Phys Lett. 74 (3), 463-465 (1999).
    31.T. Kawashima, K. Miura, T. Sato, and S. Kawakami, “Self-healing effects in the fabrication process of photonic crystals,” Appl. Phys Lett. 77 (16), 2613-2615 (2000).
    32.N. Nakada, M. Nakaji, H. Ishikawa, T. Egawa, M. Umeno, and T. Jimbo, “Improved characteristics of InGaN multiple-quantum-well light-emitting diode by GaN/AlGaN distributed Bragg reflector grown on sapphire,” Appl. Phys. Lett. 76, 1804-1806 (2000).
    33.Y. K. Song, M. Diagne, H. Zhou, A. V. Nurmikko, R. P. Schneider, Jr., and T. Takeuchi, “Resonant-cavity InGaN quantum-well blue light-emitting diodes,” Appl. Phys. Lett. 77, 1744-1746 (2000).
    34.S. Fernandez, F. B. Naranjo, F. Calle, M. A. Sanchez-Garcia, E. Calleja, P. Vennegues, A. Trampert, and K. H. Ploog, “High-quality distributed Bragg reflectors based on AlxGa1-xN/GaN multilayers grown by molecular-beam epitaxy,” Appl. Phys. Lett. 79, 2136-2138 (2001).
    35.S. Nakamura, “In situ monitoring of GaN Growth using interference effects,” Japan J. Appl. Phys. 30, 8, 1620-1627, (1991).
    36.S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting,” Appl. Phys. Lett. 64, 1687-1689 (1994).
    37.T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN,” Japan J. Appl. Phys. 37, L398-L400 (1998).
    38.Y. Kato, S. Kitamura, K. Hiramatsu, and Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Cryst. Growth 144, 133 (1994).
    39.T. Nishinaga, T. Nakano, and S. Zhang, “Epitaxial lateral overgrowth of GaAs by LPE,” Japan. J. Appl. Phys. 27 L964-L967, (1988).
    40.A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, “Thick GaN epitaxial with low dislocation density by hydride vapor phase epitaxy,” Japan J. Appl. Phys. 36 L899-L902, (1997).
    41.O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, “Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy,” Appl. Phys. Lett. 71 2638-2640, (1997).
    42.S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, “InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate,” Appl. Phys. Lett. 72 (2), 211-213 (1998).
    43.S. Nakamura, M. Senoh, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, “Present status of InGaN/GaN/AlGaN-based laser diodes,” J. of Crystal Growth 189/190 820-825 (1998).
    44.K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light-emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Japan. J. Appl. Phys. 40, L583-L585, (2001).
    45.M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Japan. J. Appl. Phys. 41, L1431-L1433, (2002).
    46.C-Y Cho, J-B Lee, S-J Lee, S-H Han, T-Y Park, J W Kim, Y C Kim, and S-J Park, “Improvement of light output power of InGaN/GaN light-emitting diode by lateral epitaxial overgrowth using pyramidal-shaped SiO2,” Optics Express 18, 1462-1468 (2010).
    47.E. H. Park, J. Jang, S. Gupta, I. Ferguson, C.H. Kim, S. K. Jeon, and J. S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett. 93, 191103 (2008).
    48.M. K. Kwon, J. Y. Kim, I. K. Park, K. S. Kim, G.Y. Jung, S.J. Park, J. W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett. 92, 251110 (2008).
    49.M. Ikegawa and J. Kobayashi, “Deposition profile simulation using the direct simulation monte carlo method,” J. Electrochem. Soc. 136 (10), 2982-2986, (1989).
    50.S. Tazawa, S. Matsuo, and K. Saito, “A general characterization and simulation method for deposition and etching technology,” IEEE Tran. on Semi. Manuf. 5, 1, 27-33 (1992).
    51.S. Abdollahi-Alibeik, J. P. McVittie, K. C. Saraswat, V. Sukharev and P. Schoenborn, “Analytical modeling of silicon etch process in high density plasma,” J. Vac. Sci.Technol. A 17(5), 2485-2491 (1999).
    52.H. Bach, “Application of ion sputtering in preparing glasses and their surface layers for electron microscope investigations,” J. of Non-Crystalline Solids 3, 1-32 (1970).
    53.S. J. Hsu, “Simulation and analysis of auto-cloning photonic crystal with ion beam sputter method,” Mater thesis, National Tsing Hua University (2004).
    54.S. Matsuo, “An analytical treatment on the pattern formation process by sputter etching with a mask,” Japan. J. Appl. Phys. 15, 7, 1253-1262 (1976).
    55.A. Bubenzer, B. Dischler, G. Brandt, and P. Koidl, “rf-plasma deposited amorphous hydrogenated hard carbon thin films: Preparation, properties, and applications,” J. Appl. Phys. 54 (8), 4590-4595 (1983).
    56.Y. Catherine and P. Couderc, “Electrical characteristics and growth kinetics in discharges used for plasma deposition of amorphous carbon,” Thin Solid Films 144, 265-280 (1986).
    57.Y. P. Cheng, “Study of light extraction enhancement on GaN-based light-emitting diodes with auto-cloned photonic crystal,” Mater thesis, National Tsing Hua University (2008).
    58.H. T. Wang, “Simulation of light extraction efficiency for GaN-LED with embedded micro-structure,” Mater thesis, National Tsing Hua University (2010).
    59.K.S. Yee, ”Nurmerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307, (1966).
    60.J. D. Kruschwitz and W.T. Pawlewicz, “Optical and durability properties of infrared transmitting thin films,” Appl. Opt. 36, 2157-2159 (1997).
    61.K. Hiramatsu, “Epitaxial lateral overgrowth techniques used in group III nitride epitaxy,” J. of Phys: Condensed Matter 13, 6961-6975 (2001).
    62.Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, “Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities,” Appl. Phys. Lett. 94, 111109 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE