簡易檢索 / 詳目顯示

研究生: 李一凡
Li, Yi-Fan
論文名稱: 奈米碳管薄膜之表面改質與導電特性
Surface decoration and characterization of transparent carbon nanotube films
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 78
中文關鍵詞: 奈米碳管
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract

    The works presented in this thesis discuss the direct exposure of carbon nanotubes to xenon excimer ultraviolet irradiation and effects include change in surface tension, contact angle and state of coating carbonaceous impurities. Irradiated carbon nanotubes are then mixed with polymer and tested as cation collector. Meanwhile, we also discuss the effects of NH3 decoration on nanotubes and an effective technique with electromagnetic application is therefore developed to modulate proton concentration on tube surfaces and verified by microscope analyses. In the end, an enhanced shielding effectiveness is detected at unpurified carbon nanotubes coated film and odd-alternate □-radicals sealed within carbonaceous materials are found capable of enhancing adsorption mechanism and underlying mechanism is discussed.

    Chapter 1 introduces the background of carbon nanotubes in this thesis, including the structure, electronic properties, chemical properties such as covalent and non-covalent modification, and nanotube synthetic method.

    Chapter 2 describes the experimental methods and characterization techniques employed in this study.

    Chapter 3 discusses the effects arising from direct exposure of carbon nanotubes to the xenon excimer ultraviolet irradiation at ambient environment and tube surfaces are found decorating with abundant carboxylic groups bound to lattices, hence improving tube surface tension and wetting.

    Chapter 4 demonstrates formation of an electric double layer on carbon nanotubes via NH3.H2O treatment upon electric field application and tube wetting is therefore improved. Proton concentration on tube surfaces can be further modulated by a Lorentz force and is verified by multi-transition of hydrophobic into hydrophilic phase.

    Chapter 5 discusses the contribution of odd alternate □-radicals encapsulated carbonaceous impurities to enhanced shielding effectiveness at radiofrequency and polyethylene terephthalate films coated with pristine and purified single-walled carbon nanotubes are tested and compared.

    Chapter 6 concludes the results of our experiments.

    摘要

    本論文主要探討在大氣底下氙紫外光燈射照對奈米碳管的表面性質之影響,例如碳管表面張力的明顯變化以及表面雜質的去除。而照射後的奈米碳管也將可應用於奈米碳管複合材的合成以及汙水中重金屬離子的吸附。而另一研究則是探討利用氨水修飾奈米碳管薄膜並藉由電磁場的交替運用來改變薄膜表面的質子濃度進而調控液珠在薄膜表面的潤濕情況以及遷移速度。最後則是討論在無線電頻率下,未純化的碳管所合成的奈米碳管薄膜的電磁波遮蔽效果較純化的碳管佳的原因,而相關機制也將於此探討。

    第一章
    首先簡介奈米碳管的基本性質,如結構,電性,化學性質以及前人對於碳管氧化機制以及電潤濕機制的論述。

    第二章
    在進入主題前,本章節先介紹實驗設置以及所使用的儀器和實驗步驟。

    第三章
    此章節主要探討利用氙紫外燈的直接照射來去除碳管表面雜質以及使得碳管表面官能基化,並藉由液珠在碳管表面接觸角變化來計算不同照射時間下碳管表面張力的變化,且透過拉曼光譜、遠紅外線光譜、熱差分析結果、SEM影像等實驗結果來證實。

    第四章
    本章節介紹透過氨水處理的碳管導電薄膜可藉由電場以及磁場的交替運用來調控液珠在薄膜表面的形狀以及遷移速度,並利用理論計算得知在不同的電磁場運用下,碳管薄膜的表面張力變化。

    第五章
    此章節說明非晶質碳有助於碳管薄膜在無線電頻率下的電磁波遮蔽效果,並利用未純化以及純化後的碳管製成的薄膜來做比較。

    第六章
    總結以上各章節的結果。


    Contents Abstract………………………..……………………………………………………. I Acknowledgement…………………………………………………………………..Ⅴ Contents……………………..………………………………………………………Ⅶ Table list……………………………………………………………………….…….Ⅹ Figure Captions……………………………………………………………………..XI Chapter 1 Introduction 1-1 Structure of carbon nanotubes……………………………..………………….1 1-2 Electronic properties of carbon nanotubes…………………………………….5 1-3 Chemical properties of carbon nanotubes……………………………………..7 1-3-1 Chemical reactivity…………………………………………………...7 1-3-2 Covalent Modification………………………………………………..7 1-3-3 Oxidation Mechanisms……………………………………………….8 1-3-4 Noncovalent modification……………………………………………9 1-4 Principles of electrowetting…………………………………………………..17 1-5 Syntheses of carbon nanotubes………………………………………………21 References………………………………………………………………………..22 Chapter 2 Experimental 2-1 Sample preparation and experimental setup………………………….……...24 2-1-1 Device fabrication for experiments of a gas-phase hydrophilization of carbon nanotubes………………………... ………………..………..24 2-1-2 Device fabrication for experiments of electromagnetic modulation of carbon nanotube wetting……………………………….…………...25 2-2 Characterization instruments…………….…………………………..…...….25 References………………………………………………………………………..28 Chapter 3 A gas-phase hydrophilization of carbon nanotubes by xenon excimer ultraviolet irradiation 3-1 Background and motivation………………………………………………….29 3-2 Experimental details………………………………………………………….30 3-3 Results and discussion……………………………………………………….30 3-4 Supplementary information………………………………………………….43 References………………………………………………………………………..45 Chapter 4 Electromagnetic modulation of carbon nanotube wetting 4-1 Background and motivation………………………………………..………....47 4-2 Experimental details……………………………………………….……….....47 4-3 Results and discussion………………………………………………………...48 References…………………………………………………………………….…..59 Chapter 5 Enhanced electromagnetic adsorption by odd alternate □-radicals at radiofrequency 5-1 Background and motivation…………………………………………………..60 5-2 Experimental details…………………………………………………………..61 5-3 Results and discussion………………………………………………………...62 5-4 Supplementary information…………………………………………………...74 References…………………………………………………………………………75 Chapter 6 Conclusions……………………….…………………………………….77 Table list Table 3.1 Surface tension (□ lv) of DW and EG.……………………………………..35 Table 3.2 CA and surface tension of pristine, S-20, S-30 and annealed S-30.….…...36 Table 3.3 Specific surface area, average pore diameter, and volume of pristine and treated MWCNTs.………………………………………..........................39 Table 3.4 Parameters of Langmuir model for pristine and EUV-treated MWCNTs..41 Table 4.1 CA and calculated surface tensions of SWCNT film and DW and EG…..50 Table 4.2 The , and of DW and EG……………………………………….51 Figure Captions Figure 1.1 Schematic representation of a 2D graphite layer with the basis vectors a1 and a2. OA and OB define the chiral vector and the translational vector T of CNT, respectively. The chiral angle Θ is also denoted. Chiral tubes exhibit rollup vectors derived from (n, 0) (zigzag tube, Θ=0 ) or (n,n) (armchair tube, Θ=30 ). The rectangle OAB’B defines the unit cell for the nanotube. In this example, (n, m) = (5, 2)………………………………………………………………..3 Figure 1.2 An armchair type CNT with rollup vector (n, m) = (5, 5) (a), a zigzag type CNT with (n, m) = (9, 0) (b), and helix CNT here with (n, m) = (10, 5) (c)………….4 Figure 1.3(a) Tight-binding band structure of graphene (a single basal plane of graphite) shows the main high symmetry points (b) Allowed k-vectors of the (5, 5), (7, 1) and (8, 0) tubes (solid lines) mapped onto the graphite Brillouin zone…………….6 Figure 1.4 FTIR spectrum of SWCNTs treated with the acid mixture for 2h……….10 Figure 1.5 Relationship between the peak position (-COOH) and treating time……11 Figure 1.6 XPS spectra of acid-treated and pristine CNTs………………………….12 Figure 1.7 Amidation and esterfication of CNTs……………………………………13 Figure 1.8(a) One epoxy group is attached to a coronene molecule (b) Two epoxy groups are aligned on a coronene molecule and initiate an unzipping process (c) Three epoxy groups are aligned on a piece of graphene (d) Four epoxy groups aligned on a piece of graphene…………………………………………………………………….14 Figure 1.9 Chemical structures of (a) sodium dodecylsulfate, (b) sodium dodecylbenzene sulfonate, (c) Triton X-100, and (d) polyvinylpyrrolidone……......15 Figure 1.10(a) No external voltage applied and charges are distributed at the electrode-electrolyte interface, which an EDL builds. (b) External voltage applied and then charge density at EDL changes so that the contact angle decreases……………18 Figure 1.11(a) No external voltage applied and little or no charge accumulate at the interface. (b) External voltage applied and hence charge accumulates at the interfaces so that the contact angle decreases…………………………………………………..19 Figure 3.1 SEM images of pristine SWCNTs (a) and S-30 (b), TEM image of S-30 (c), optical images of pristine, S-20 and S-30 (d)……………………………..31 Figure 3.2(a) FTIR spectra of pristine SWCNTs (dark), S-20 (red), S-30 (blue) and annealed S-30. (b) Raman spectra of pristine SWCNTs (dark), S-20 (red), S-30 (blue) and annealed S-30 (green)……………………………………………………………32 Figure 3.3(a) Sheet resistance vs. irradiation time; the Ro denotes the resistance obtained from composite made from PVA and pristine nanotubes. (b) TGA profile of pristine SWCNTs (dark), S-20 (red), S-30 (blue) and annealed S-30 (green)..34 Figure 3.4 Optical images of CA in DW/pristine (a), DW/S-20 (b), DW/S-30 (c), and EG/pristine (d), EG/S-20 (e) and EG/S-30 (f)………………………………..36 Figure 3.5 ZP-pH profiles of pristine (blue) and M-50 (red)……………………….40 Figure 3.6 Adsorption isotherms of Ni2+ (a) and Pb2+ (b), and fitted Langmuir adsorption isotherms for Ni2+ (c) and Pb2+ (d)……………………………………40 Figure S3-1 DW (a) and EG (b) droplet on annealed S-30 film and corresponding CA is 93.3□ and 73□………………………………………………………………………43 Figure S3-2 Raman spectra of pristine (blue), EUV-treated MWCNTs (red) and annealed MWCNTs (green)………………………………………………………….43 Figure S3-3 FTIR spectra of pristine (blue), EUV-treated MWCNTs (red) and annealed MWCNTs (green)………………………………………………………….44 Figure S3-4 TGA profiles of pristine (blue) and EUV-treated MWCNTs (red)……...44 Figure 4.1 Experimental setup (a), SWCNT coated PET film (b), UV-VIS spectra of SWCNT-coated PET film (c), SEM image of coating SWCNTs (d). ……………….49 Figure 4.2 CAs of DW (left column) and EG (right column) droplets on pristine SWCNT film (a)(f), NH3□H2O-treated SWCNT film (b)(g), NH3□H2O-treated SWCNT film with applied voltage at 10V (c)(h), NH3□H2O-treated SWCNT film with applied voltage at 12 V (d)(i), NH3□H2O-treated SWCNT film with applied voltage at 14V (e)(j). The anode is situated at left-hand side of the droplets………………………...52 Figure 4.3 A reverse magnetic field application to electrically connected EDL- SWCNT device (a), a forward magnetic field application to electrically connected EDL-SWCNT device (b), CA variation of DW and EG versus magnetic field intensity in the presence of a constant electric field (5□105 V □m-1) (c)………………………54 Figure 4.4 Electromagnetic field controlled CAs from hydrophobic to hydrophilic phase and corresponding images: DW (dark, top panel) and EG (red, lower)………55 Figure 4.5 Volumetric flow rate (Vf ) vs. magnetic field intensity (a), variation of , , and with magnetic field (b), and variation of calculated surface energy with applied magnetic force (c)……………………………………………............58 Figure 5.1 SEM images (a-b), raman (c), and EPR spectra (d) of SWCNT-A (red) and -B (dark)……………………………………………………………………………...63 Figure 5.2 Time-evolved specific resistance upon air adsorption-desorption (a), and fitted exponential decay function of film-A (red) and -B (dark) (b)…………………66 Figure 5.3 Flexible SWCNT-coated film (a), transmittance spectrum of coated film at visible light regime (b)……………………………………………………………….68 Figure 5.4 Real permittivity (a), imaginary permittivity (b), and tangent loss (c) of film-A (red) and -B (dark)……………………………………………………………70 Figure 5.5 Shielding effectiveness (a), SEA/SER ratio (b), and derived SE (c) of film-A (red) and -B (dark)…………………………………………………………………72 Figure S5-1 TGA profiles of pristine (red) and purified SWCNTs (dark)………........74

    Chapter 1
    References
    1. S. Iijima, Nature, 1991, 354, 56.
    2. T. H. WTBZHenning and F. Salama, Science, 1998, 282, 2204.
    3. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of fullerenes & Carbon Nanotubes, San Diego: Academic Press, 1996.
    4. B. I. Yakobson and R. E. Smalley, Am. Sci., 1997, 85, 324.
    5. J. C. Charlier and J. P. Michenaud, Phys. Rev. Lett., 1993, 70, 1858.
    6. T. W. Ebbessen and P. M. Ajayan, Nature, 1992, 358, 220.
    7. C. H. Kiang, M. Endo, P. M. Ajayan, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett., 1998, 81,1869.
    8. Hamada, N., Sawada, S. & Oshiyama, A. 1992 Phys. Rev. Lett. 68, 1579–1581.
    9. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. 1992 Appl. Phys. Lett. 60, 2204–2206
    10. N. Hamada, S. Sawada, and A. Oshiyama, Phys. Rev. Lett., 1992, 68, 1579.
    11. J. W. Mintmire, B. I. Dunlap, and C. T. White, Phys. Rev. Lett., 1992, 68, 631.
    12. M. S. Dresselhaus, G. Dresselhaus, J. C. Charlier, and E. Hern´andez Phil. Trans. R. Soc. Lond. A, 2004, 362, 2065.
    13. L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett., 1996, 76, 971.
    14. S. Niyogi, M. A. Hamon, H. Hu, B. Zao, P. Bhowmik, R. Sen, M. E. Itkis, and R. C. Haddon. Acc. Chem. Res., 2002, 35, 1105.
    15. S. Iijima, P. M. Ajayan, and T. Ichihashi, Phys. Rev. Lett., 1992, 69, 3100.
    16. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Carbon Nanotubes:Synthesis, Structure, Properties, and Applications., Springer-Verlag, 2001.
    17. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science, 1998, 280, 1253.
    18. J. Zhang, H. L. Zou, Q. Qing, Y. L. Yang, Q. W. Li, and Z. F. Liu, J. Phys. Chem., 2003, 107, 16.
    19. T. Kyotani, S. Nakazaki, W. H. Xu, and A. Tomita, Carbon, 2001, 39, 771.
    20. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, J. T. Yates Jr, J. Liu, and R. E. Smalley, J. Am. Chem. Soc., 2000, 122, 2383.
    21. K. Hernadi, A. Siska, L. Thien-Nga, Solid State Ionics, 2001, 141, 203.
    22. K. C. Hwang, J. Chem. Soc. Chem. Comm., 1995, 2, 173.
    23. K. Balasubramanian and M. Burghard, Small, 2005, 1, 2.
    24. P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, and H. Hiura, Nature, 1993, 362, 522.
    25. N. Yao, V. Lordi, S. X. C. Ma, E. Dujardin, A. Krishnan, M. M. J. Treacy, and T.W. Ebbesen, J. Mater. Res., 1998, 13, 2432.
    26. J. L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud'homme, I. A. Aksay, and R. Car, Phys. Rev. Lett., 2006, 96, 17.
    27. W. L. Yim, O. Byl, J. T. Yates, and J. K. Johnson, J. Chem. Phys., 2004, 120, 5377.
    28. V. Krstic, G. S. Duesberg, J. Muster, M. Burghard, and S. Roth, Chem. Mater., 1998, 10, 2338.
    29. M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science, 2002, 297, 593.
    30. D. Tasis, N. Tagmatarchis, V. Georgakilas, and M. Prato, Chem. Eur. J., 2003, 9, 4000.
    31. M. F. Islam, E. Rojas, D. M. Bergey, A. T. Johnson, and A. G. Yodh, Nano Lett., 2003, 3, 269.
    32. R. J. Chen, Y. G. Zhan, D. W. Wang, and H. J. Dai, J. Am. Chem. Soc., 2001, 123, 3838.
    33. A. H. Barber, S. R. Cohen, and H. D. Wagner, Phys. Rev. Lett., 2004, 92, 186103.
    34. Z. Yu and L.E. Brus, J. Phys. Chem. A, 2000, 104, 10995.
    35. C. Journet, W. K Maser, P. Bernier, A. Loiseau, M. Lamy. de. la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature, 1997, 388, 756.
    36. M. G. Lippmann, Ann. Chim. Phys., 1875, 5, 494.
    37. H. Moon, S. K. Cho, R. L. Garrell, and C. J. Kim, J. Appl. Phys., 2002, 92(7), 4080.
    38. J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, Sens. and actua. A, 2002, 95, 259.
    39. T. B. Jones, M. Gunji, M. Washizu, and M. J. Feldman, J. Appl. Phys., 2001, 89, 1441.
    40. H. J. I. Verheijen and M. W. J. Prins, Langmuir, 1999, 15, 6616.
    41. M. Gunji and M. Washizu, J. Phys. D: Appl. Phys., 2005, 38, 2417.
    42. E. Seyrat and R. A. Hayes, J. Appl. Phys., 2001, 90, 1383.
    43. T. W. Ebbesen and P. M. Ajayan. Nature, 1992, 358, 220.
    44. W. Kratschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman, Nature, 1990, 347, 354.
    45. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. Scuseria, D. Tom´anek, J. E. Fischer, and R. E. Smalley, Science, 1996, 273, 483.
    46. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassel, and H. Dai, Science, 1999, 283, 512.

    Chapter 2
    References
    1. H. M. Cheng, F. Li, X. San, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett., 1998, 289, 602.
    2. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy. de. la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature, 1997, 388, 756.
    3. R. Krupke, F. Hennrich, H. V. Löhneysen, and M. M. Kappes, Science, 2003, 301, 344.

    Chapter 3
    References
    1. L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett., 1998, 73, 3842.
    2. K. Liao and S. Li, Appl. Phys. Lett., 2001, 79, 4225.
    3. X. Y. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young, Chem. Mater., 2000, 12, 1049.
    4. W. K. Hsu, V. Kotzeva, P. C. P. Watts, and G. Z. Chen, Carbon, 2005, 42, 1707.
    5. P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, Adv. Mater., 2000, 12, 750.
    6. W. Zhao, C. Song, and P. E. Pehrsson, J. Am. Chem. Soc., 2002, 124(42), 12418.
    7. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. K. Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, and R. E. Smalley, Science, 1998, 280, 1253.
    8. S. F. McKay, J. Appl. Phys., 1964, 35, 199.
    9. M. Salvermoser and D. E. Murnick, Appl. Phys. Lett., 2003, 83, 1932.
    10. H. M. Cheng, F. Li, X. San, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus, and M. S. Dresselhaus, Chem. Phys. Lett., 1998, 289, 602.
    11. J. Zhang, H. L. Zou, Q. Qing, Y. L. Yang, Q. W. Li, Z. F. Liu, X. Y. Guo, and Z. L. Du, J. Phys. Chem. B, 2003, 107, 3712.
    12. D. B. Mawhinney, V. Naumenko, A. Kuznetsova, and J. T. Yates, Jr, J. Am. Chem. Soc., 2000, 122, 2383.
    13. J. L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud’homme, I. A. Aksay, and R. Car, Phys. Rev. Lett., 2006, 96,176101(4).
    14. H. C. Li, S. Y. Lu, S. H. Syue, W. K. Hsu, and S. C. Chan, Appl. Phys. Lett., 2008, 93, 033104.
    15. P. C. P. Watts, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, Nano. Lett., 2003, 3, 549.
    16. H. F. Kuo, D. H. Lien, and W. K. Hsu, Appl. Phys. Lett., 2006, 89, 044109(3).
    17. D. K. Owen and R. C. Wendt, J. Appl. Polym. Sci., 1969, 13, 1741.
    18. E. Dujardin, T. W. Ebbesen, H. Hiura, and K. Tanigaki, Science, 1994, 265, 1850.
    19. N. Chakrapani, Y. M. Zhang, S. K. Nayak, J. A. Moore, D. L. Carroll, Y. Y. Choi, and P. M. Ajayan, J. Phys. Chem. B, 2003, 107, 9308.
    20. Y. Park, R. J. W. E. Lahaye, and Y. H. Lee, Comput. Phys. Commun., 2007, 177, 46.
    21. I. Langmuir, J. Am. Chem. Soc., 1918, 40(9), 1361.
    22. H. M. F. Freundlich, Z. Phys. Chem., 1906, 57, 385.

    Chapter 4
    References
    1. A. H. Barber, S. R. Cohen, and H. D. Wagner, Phys. Rev. Lett., 2004, 92, 186103.
    2. Z. Yu and L. E. Brus, J. Phys. Chem. A, 2000, 104, 10995.
    3. C. Journet, W. K. Maser, P. Bernier, A. Loiseau, M. Lamy.de.la Chapelle, S. Lefrant, P. Deniard, R. Lee, and J. E. Fischer, Nature, 1997, 388, 756.
    4. R. Krupke, F. Hennrich, H. V. Löhneysen, and M. M. Kappes, Science, 2003, 301, 344.
    5. H. F. Kuo, D. H. Lien, and W. K. Hsu, Appl. Phys. Lett. 2006, 89, 044109-1.
    6. H. F. Kuo, D. H. Lien, W. K. Hsu, N. H. Tai, and S. C. Chang, J. Mater. Chem., 2007, 17, 3581.
    7. M. D. Ellison, M. J. Crotty, D. Koh, R.L. Spray, and K.E. Tate, J. Phys.Chem. B, 2004, 108, 7938.
    8. D. K. Owen and R. C. Wendt, J. Appl. Polym. Sci., 1969, 13, 1741.
    9. F. M. Fowkes, Ind. Eng. Chem., 1964, 56, 40.

    Chapter 5
    References
    1. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen and P. C. Eklund, Nano Lett., 2006, 6, 1141.
    2. Y. C. Chen, C. C. Li, Y. F. Li, W. Chin, S. Y. Lu, C. T. Hsu, S. H. Syue, H. J. Chen, B. Y. Wei, W. K. Hsu and S. C. Chang, J. Mater. Chem., 2008, 18, 4616.
    3. M. Chipara, J. M. Zaleski, D. Hui, C. Du and N. Pan, J. Polym. Sci. B, 2005, 43, 3406.
    4. Y. F. Li, C. I. Hung, C. C. Li, W. Chin, B. Y. Wei and W. K. Hsu, J. Mater. Chem., 2009, 19, 6761.
    5. H. F. Kuo, C. T. Hsu, D. H. Lien, S. H. Syue, Y. S. Kao, C. C. Li, Y. F. Li, W. Chin, S. C. Chang, B. Y. Wei and W. K. Hsu, Appl. Phys.Lett., 2008, 93, 223111.
    6. C. N. Banwell, Fundamentals of Molecular Spectroscopy, McGraw-Hill:Lodon, 3rd edn, 1983, ch. 1, pp6-11.
    7. D. Ugarte, Chem. Phys. Lett., 1992, 198, 596.
    8. H. F. Kuo, D. H. Lien, W. K. Hsu, N. H. Tai and S. C. Chang, J. Mater. Chem., 2007, 17, 3581.
    9. S. D. M. Brown, A. Jorio, P. Corio, M.S. Dresselhaus, G. Dresselhaus, R. Saito and K. Kneipp, Phys. Rev. B, 2001, 63, 155414.
    10. K. Kempa, Phys. Rev. B, 2002, 66, 195406.
    11. C. Jiang, K. Kempa, J. L. Zhao, U. Schlecht, U. Kolb, T. Basché, M. Burghard and A. Mews, Phys. Rev. B, 2002, 66, 161404.
    12. J. L. Li, K. N. Kudin, M. J. McAllister, R. K. Prud’homme, I. A. Aksay and R. Car, Phys. Rev. Lett., 2006, 96, 176101.
    13. Y. F. Li, C. I. Hung, H. F. Kuo, S. H. Syue, W. K. Hsu, S. L. Kuo and S. C. Huang, J. Mater. Chem., 2009, 19, 7694.
    14. N. S. Jacobson and D. M. Curry, Carbon, 2006, 44, 1142.
    15. L. B. Ebert, Science, 1990, 247, 1468.
    16. M. S. Dresselhaus, G. Dresselhaus, R. Saito and A. Jorio, Phys. Rep., 2005, 409, 47.
    17. K. Tanaka, T. Sato, T. Yamabe, K. Okahara, K. Uchida, M. Yumura, H. Niino, S. Ohshima, Y. Kuriki, K. Yase and F. Ikazaki, Chem. Phys. Lett., 1994, 223, 65.
    18. V. Likodimos, S. Glenis, N. Guskos and C. L. Lin, Phys. Rev. B, 2003, 68, 045417.
    19. H. F. Kuo, W. Chin, T. W. Cheng, W. K. Hsu and J. W. Yeh, Appl. Phys. Lett., 2006, 89, 182503.
    20. M. Chipara, K. Lozano and M. D. Chipara, Carbon, 2007, 45, 2692.
    21. A. R. Adhikari, H. Bakhru, P. M. Ajayan, R. Benson and M. Chipara, Nucl. Instr. and Meth. B, 2007, 265, 347.
    22. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo and Y. Chen, Carbon, 2007, 45, 821.
    23. L. J. Dunne, A. K. Sarkar, H. W. Kroto, J. Munn, P. Kathirgamanathan, U. Heinen, J. Fernandez, J. Hare, D. G. Reid and A. D. Clark, J. Phys. Condens. Matter, 1996, 8, 2127.
    24. H. C. Li, S. Y. Lu, S. H. Syue, W. K. Hsu and S. C. Chang, Appl. Phys. Lett., 2008, 93, 033104.
    25. Y. C. Chen, C. C. Li, Y. F. Li, W. Chin, Y. H. Lin, S. Y. Lu, C. T. Hsu, S. H. Syue, H. J. Chen,B. Y. Wei, W. K. Hsu and S. C. Chang, J. Mater. Chem., 2008, 18, 4616.
    26. P. C. P. Watts, D. R. Ponnampalam, W. K. Hsu, A. Barnes and B. Chambers, Chem. Phys. Lett., 2003, 378, 609.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE