簡易檢索 / 詳目顯示

研究生: 蔡旻橋
Tsai, Min-Chiao
論文名稱: 不同形貌氧化鈦相關材料-製備與應用
Titanium Oxide Related Materials - Syntheses and Applications
指導教授: 李紫原
Lee, Chi-Young
裘性天
Chiu, Hsin-Tien
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 155
中文關鍵詞: 二氧化鈦甲酸微米球米氏散射鋰離子電池
外文關鍵詞: titanium dioxide, formic acid, micron spheres, Mie scattering, Li ion battery
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦粉末長久以來總是吸引著科學家的目光,近年來,奈米研究的蓬勃發展更將二氧化鈦導入了許多的新興領域.於此,本研究利用溶液-凝膠法,以四異丙基醇鈦和不同碳鏈的有機酸為前軀物和添加物反應合成不同形貌及結構的氧化鈦奈米粉末.
      本研究發現,有機酸在我們的系統中扮演著極為關鍵的角色,不單單只控制著形貌還控制著顆粒大小及結構.當以短鏈有機酸,如甲酸和乙酸,與四異丙基醇鈦反應時,我們可分別得到奈米薄片和奈米帶狀的產物,有趣的是,經由X光繞射的比對發現這些產物皆為初次發現的新結構,由多種的儀器分析結果來看,我們猜測此甲酸-插層鈦酸鹽可能由兩個邊連接的雙八面體的階梯結構所組成,如果此結構屬實,將是現今已知最短的鈦酸鹽結構,這將有助於探討鈦酸鹽轉變為介穩定TiO2-B的機制.此外,藉由適當的高溫熱處理後我們可以在300及550度C得到銳鈦礦及TiO2-B相,我們分別將TiO2-B的奈米薄片和銳鈦礦奈米帶運用於鋰離子二次電池及染料的光催化降解上.TiO2-B奈米薄片陽極在充放電的測試中,我們在第一次放電測試得到了357毫安培小時/克的電容量,這數值為TiO2-B至今最高的鋰離子嵌入量,顯示了TiO2-B奈米薄片於鋰離子電池上的潛力,儘管可逆電容受製程影響仍不盡理想.而於光催化的測試中,我們測試了不同熱處理溫度以及摻雜下的奈米帶降解的能力,發現氮摻雜後的奈米帶有著比商業二氧化鈦粉末優越的光催化特性.
      而當我們增加有機酸的碳鏈長度時,我們卻可以得到有別於上述兩種形貌的產物-圓形的奈微米顆粒.我們探討了有機酸碳用量、鏈長短及水添加量對微米與次微米顆粒生成的影響.我們發現酸的使用量與碳鏈長短皆與次微米球大小有著正相關,也就是當添加量增加或是使用長碳鏈有機酸時,皆會增加次微米球的直徑,然而水的添加量則有著相反的特性,水添加量變多時則會縮小次微米球的直徑,但卻也大幅提昇了次微米球的均勻度.藉由以上的三個調控參數,我們可以調整次微米球的大小至我們所需要的尺寸.此外,我們發現這些大小介於次微米到微米的圓球有著對可見光極為顯著的散射性質,經由細密的調控我們可以得到橫跨整個可見光波段的濾光片.我們更近一步的利用此散射特性,於微球上修飾可辨識人類表皮生長因子受器的抗體,將微球當做生物標記來辨別乳癌與正常的細胞,此方法也避免了傳統酵素連結免疫吸收法中呈色受質會隨時間變質的缺點.


    Tables of Contents Abstract I Abstract (in Chinese) III Acknowledgement Table of Contents VII List of Figure Captions IX List of Tables XXI Chapter 1: Introduction and Motivation ...........................................................1 1-1 Introduction …………………………………………………………………….2 1-2 Motivations of my study ……………………………………………………….5 Chapter 2: Literature Review ……………...…………………………………….7 2-1 Introduction of TiO2 polymorphs ..............................8 2-1-1 Anatase phase .........................................8 2-1-2 Rutile phase ..........................................................................................10 2-1-3 Brookite phase ......................................................................................10 2-1-4 TiO2-B phase ........................................................................................11 2-1-5 TiO2-H and TiO2-R phases ...................................................................13 2-1-6 TiO2-II and Baddeleyite type TiO2 .......................................................13 2-2 Synthesis, crystalline structure and applications of protonated titanates ..........14 2-2-1 Synthesis, crystalline structure protonated titanates ............................14 2-2-2 Applications of protonated titanate ......................................................16 2-3 Mie scattering and its applications ....................................................................19 2-3-1 Mie theory ............................................................................................19 2-3-2 Mie resonance (whispering-gallery modes, WGMs) ...........................25 2-3-3 Applications of Mie scattering .............................................................27 2-4 Structure of the EGF receptor and its role on breast cancer cell .......................31 2-4-1 Structure of the EGFR......................................................................... 32 2-4-2 Structural conformation in sEGFR and dimerisation ..........................33 2-4-3 Role of HER2 on breast cancer cell .....................................................36 2-5 The performance of TiO2 nanostructural anodes in Li ion battery ...................38 2-5-1 Anatase nanostructural anodes ............................................................38 2-5-2 Rutile nanostructural anodes ................................................................41 2-5-3 Hydrogen titanate and TiO2-B nanostructural anodes .........................41 2-5-4 Other TiO2 polymorph anodes .............................................................43 Chapter 3: Experimental Procedures ................................................................47 3-1 Formate-linked titanate nanosheets - synthesis and there application in Li ion battery test ........................................................................................................48 3-1-1 Synthesis of formate-linked titanate ....................................................48 3-1-2 Preparation of nano structural anodes of TiO2 for Li ion battery test .49 3-2 Acetate-linked titanate nanobelts ......................................................................51 3-2-1 Synthesis of acetate-linked titanate .....................................................51 3-2-2 Photocatalytic experiment of TiO2 ......................................................51 3-3 Synthesis of TiO2 nanoparticles and micron spheres .......................................52 3-4 Coating of the micron spheres and preprocedure Mie scattering assay for cancer detection ...........................................................................................................54 3-4-1 Coating of the micron spheres on substrates .......................................54 3-4-2 Preprocedure of Mie scattering assay for cancer detection .................55 3-4-2-1 Modification of surfaces of spheres .....................................55 3-4-2-2 Quantitative test for surface amine groups ...........................56 3-4-2-3 Linkage of anti-HER2 and IgG antibodies ...........................56 3-4-2-4 Cell culture and test ..............................................................57 3-5 Characterization and analysis ..............................................................................57 3-5-1 Characterization of morphology and structure ....................................57 3-5-2 Measurement of scattering and size of submicron and micron sphere 58 3-5-3 Softwares of refinement and structure modeling .................................59 Chapter 4: Lithium Ion Intercalation Performance of Porous Laminal Titanium Dioxides Synthesized by Sol-gel Process .................60 4-1 Abstract .............................................................................................................61 4-2 Synthesis and structure characterization of formic acid intercalated titanate nanosheets ........................................................................................................62 4-2-1 Synthesis of formic acid intercalated titanate ......................................62 4-2-2 Characterizations of formic acid intercalated titanate .........................62 4-2-3 Prediction of HCOOH-intercalated titanate structure .........................69 4-2-4 Phase transformation of HCOOH-intercalated titanate at high temperature .........................................................................................71 4-3 Lithium ion intercalation performance of porous laminal titanium dioxides ...74 4-4 Conclusions .......................................................................................................78 Chapter 5: Synthesis and Application of Acetic Acid Linked Titanate Nanobelts ...............................................................................................80 5-1 Abstract .............................................................................................................81 5-2 Synthesis and structure characterization of acetic acid linked titanate nanobelts ...........................................................................................................81 5-3 Photocatalytic property of nanobelts at different calcined temperature ............87 5-4 Conclusions .......................................................................................................89 Chapter 6: Tailor Made Mie Scattering Color Filters Made by Size-Tunable Titanium Dioxide Particles ..................................92 6-1 Abstract .............................................................................................................93 6-2 The effects of quantity and carbon length of n-carboxylic acids on particle size and polydispersity ............................................................................................93 6-2-1 The effect of the length of alkyl group ................................................94 6-2-2 The effect of the water content ..........................................................101 6-3 Mie scattering of micron spheres and application on color filters ..................104 6-4 Conclusions .....................................................................................................109 Chapter 7: Detecting HER2 on Cancer Cells by TiO2 Spheres Mie Scattering Assay ...............................................................................112 7-1 Abstract ..........................................................................................................113 7-2 Mie scattering of highly uniform micron spheres ..........................................114 7-3 Mie scattering assay for detecting HER2 on MBT2 cancer cells ..................116 7-4 Conclusion ......................................................................................................122 Additional work: Synthesis of Zirconium Dioxide Nanotubes, Nanowires, and Nanocables by Concentration Dependent Solution Deposition ............................................................................................125 A-1 Abstract and indroduction ..............................................................................126 A-2 Experimental section ......................................................................................128 A-3 Results and discussions ..................................................................................130 A-4 Conclussions ...................................................................................................136 Conclusions ...............................................................................................................138 References ..................................................................................................................140 Publication List ........................................................................................................155

    Chapter 1
    [1] Q. Chen, W. Zhou , G.H. Du , L. M. Peng, Adv. Mater. 2002, 14, 1208.
    [2] S. Zhang, Q. Chen, L. M. Peng, Phys. Rev. B 2005, 71, 014104.
    [3] S. Doeuff, Y. Dromzee, F. Taulelle, C. Sanchez, Inorg. Chem. 1989, 28, 4439.
    [4] X. Lei, M. Shang, T. P. Fehlner, Organometallics 1997, 16, 5289.
    [5] T. J. Boyle, T. M. Alam, C. J. Tafoya, B. L. Scott, Inorg. Chem. 1998, 37, 5588.
    [6] Tsai, M. C.;Tsai, T. L.; Lin C. T.; Chung, R. J.; Sheu, H. S.; Chiu, H. T.; Lee, C. Y. J. Phys. Chem. C 2008, 112, 2697.
    [7] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269.
    [8] U. M. Shahed Mofareh Al-Shahry Khan, B. William, Jr. Ingler, Science 2001, 297, 2243.
    [9] S. Sakthivel, H. Kisch, Angew. Chem. Int. Ed. 2003, 42, 4908.
    [10] J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, J. Zhao, Environ. Sci. Technol. 2005, 39, 1175
    [11] M. V. Koudriachova, N. M. Harrison, J. Mater. Chem. 2006, 16, 1973.
    [12] M. V. Koudriachova, N. M. Harrison, S. W. de Leeuw, Phys. Rev. lett. 2001, 86, 1275.
    [13] T. Ma, M. Akiyama, E. Abe, I. Imai, Nano. Lett. 2005, 5, 2543.
    [14] A. Ghicov, J. M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Nano. Lett. 2006, 6, 1080.
    [15] Ma, R. Z.; Sasaki, T.; Bando, Y. Chem Commun 2005, 948.
    [16] X. Liu, X. Zhao, C. Ding, P. K. Chu, Appl. Phys. Lett. 2006, 88, 013905.
    [17] M. Cho, H. Chung, W. Choi, J. Yoon, Appl. Environ. Microbiol. 2005, 71, 270.
    [18] U. Diebold, Surf. Sci. Report 2003, 48, 53.
    [19] L. J. Meng, V. Teixeira, H. N. Cui, F. Placido, Z. Xu, M. P. dos Santos, Appl. Surf. Sci. 2006, 252, 7970.
    [20] M. M. Abdel-Aziz, I. S. Yahia, L. A. Wahab, M. Fadel, M. A. Afifi, Appl. Surf. Sci. 2006, 252, 8163.
    [21] Z. M. Qi, K. Itoh, M. Murabayashi, C. R. Lavers, Optic. Lett. 2000, 25, 1427.
    [22] G. S. Vicente, M. T. Gutierrez, Thin Solid Film 2002, 403-404, 335.
    [23] J. W. Olesik, J. A. Kinzer, J. Appl. Phys Part 1 1997, 36, 4423.
    [24] S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, G. A. Ozin, Nano. Lett. 2006, 6, 2456 .
    [25] Nat. Photics
    [26] E. Graugnard, D. P. Gaillot, S. N. Dunham, C. W. Neff, T. Yamashita, C. J. Summers, Appl. Phys. Lett. 2006, 89, 181108.
    [27] S. Y. Choi, B. Lee, D. B. Carew, M. Mamak, F. C. Peiris, S. Speakman, N. Chopra, G. A. Ozin, Adv. Funct. Mater. 2006, 16, 1713.
    [28] A. C. Arsenault, D. P. Puzzo, I. Manners, G. A. Ozin, Nat. Photonics 2007, 1, 468.
    [29] S. Y. Choi, M. Mamak, G. von Freymann, N. Chopra, G. A. Ozin, Nano Lett. 2006, 6, 2456.
    [30] R. Fenollosa, F. Meseguer, M. Tymczenko, Adv. Mater. 2008, 20, 95.
    [31] C. P. Reis, A. J. Ribeiro, R. J. Neufeld, F. Veiga, Biotechnol. Bioeng. 2007, 96, 977.
    [32] X. H. Wu, A. Yamilov, H. Noh, C. Hui, J. Opt. Soc. Am. B 2004, 21, 159.
    [33] A. J. Cox, A. J. DeWeerd, J. Linden, Am. J. Phys. 2002, 70, 620.
    [34] P. Kollias, B. A. Albrecht, F. Marks Jr, B. Am. Meteorol. Soc. 2002, 83, 1471.
    [35] D. Baumer, B. Vogel, S. Versick, R. Rinke, O. Mohler, M. Schnaiter, Atmos. Environ. 2008, 42, 989.
    [36] Armstrong, A. R.; Armstrong, G.; Canales, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2004, 43, 2286.
    [37] Armstrong, G.; Armstrong, A. R.; Canales, J.; Bruce, P. G. Chem. Commun. 2005, 2454.

    Chapter 2
    [1] fan, X. Acta Chem Scand, 3, 3.
    [2] Lee, B. I.; Wang, X. Y.; Bhave, R.; Hu, M. Mater Lett 2006, 60, 1179.
    [3] Deng, Q. X.; Wei, M. D.; Ding, X. K.; Jiang, L. L.; Ye, B. H.; Wei, K. M. Chem Commun 2008, 3657.
    [4] Armstrong, G.; Armstrong, A. R.; Bruce, P. G.; Reale, P.; Scrosati, B. Adv Mater 2006, 18, 2597.
    [5] Kuhn, A.; Baehtz, C.; Garcia-Alvarado, F. J Power Sources 2007, 174, 421.
    [6] Noailles, L. D.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M. J Power Sources 1999, 82, 259.
    [7] Takahashi, Y.; Kijima, N.; Akimoto, J. Chem Mater 2006, 18, 748.
    [8] Olsen, J. S.; Gerward, L.; Jiang, J. Z. J Phys Chem Solids 1999, 60, 229.
    [9] El Goresy, A.; Chen, M.; Dubrovinsky, L.; Gillet, P.; Graup, G. Science 2001, 293, 1467.
    [10] Andersson, S.; Wadsley, A. D. Acta Chem Scand 1961, 15, 663.
    [11] Andersson, S.; Wadsley, A. D. Acta Crystallogr 1961, 14, 1245.
    [12] Sasaki, T.; Watanabe, M.; Fujiki, Y.; Kitami, Y. Chem Mater 1994, 6, 1749.
    [13] Grey, I. E.; Madsen, I. C.; Watts, J. A.; Bursill, L. A.; Kwiatkowska, J. J Solid State Chem 1985, 58, 350.
    [14] Sasaki, T.; Izumi, F.; Watanabe, M. Chem Mater 1996, 8, 777.
    [15] Bavykin, D. V.; Friedrich, J. M.; Walsh, F. C. Adv Mater 2006, 18, 2807.
    [16] Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Langmuir 1998, 14, 3160.
    [17] Du, G. H.; Chen, Q.; Han, P. D.; Yu, Y.; Peng, L. M. Phys Rev B 2003, 67.
    [18] Peng, C. W.; Ke, T. Y.; Brohan, L.; Richard-Plouet, M.; Huang, J. C.; Puzenat, E.; Chiu, H. T.; Y., L. C. Chem. Mater. 2008, 20, 2426.
    [19] Conforto, E.; Caillard, D.; Mueller, L.; Mueller, F. A. Acta Biomaterialia 2008, 4, 1934.
    [20] Nakahira, A.; Kato, W.; Tamai, M.; Isshiki, T.; Nishio, K.; Aritani, H. J Mater Sci 2004, 39, 4239.
    [21] Lim, S. H.; Luo, J. Z.; Zhong, Z. Y.; Ji, W.; Lin, J. Y. Inorg Chem 2005, 44, 4124.
    [22] Bavykin, D. V.; Lapkin, A. A.; Plucinski, P. K.; Friedrich, J. M.; Walsh, F. C. J. Phys. Chem. B 2005, 109, 19422.
    [23] Ma, R. Z.; Sasaki, T.; Bando, Y. Chem Commun 2005, 948.
    [24] Sun, X. M.; Li, Y. D. Chem-Eur J 2003, 9, 2229.
    [25] Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particle; Wiley: New York 1983, p 8.
    [26] Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particle; Wiley: New York 1983, p 166.
    [27] Hulst, H. C. v. d. In Light scattering by small particles; Wiley: New York, 1957.
    [28] Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particle; Wiley: New York 1983.
    [29] Hulst, H. C. v. d. In Light scattering by small particles; Wiley: New York, 1957, p 35.
    [30] Hulst, H. C. v. d. In Light scattering by small particles; Wiley: New York, 1957, p 126.
    [31] Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particle; Wiley: New York 1983, p 100.
    [32] Arfken, George B. In mathematical methods for physicists; Elsevier: New York 1983, p 100.
    [33] Ma, A. B.; Ilchenko, V. S. IEEE Journal Selected Topics in Quantum Electronics 2006, 12, 3.
    [34] Vollmer, F.; Arnold, S. Nat. Methods 2008, 5, 591.
    [35] Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particle; Wiley: New York 1983, p 326.
    [36] Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particle; Wiley: New York 1983, p 296.
    [37] Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particle; Wiley: New York 1983, p 296.
    [38] Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particle; Wiley: New York 1983, p 297.
    [39] Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particle; Wiley: New York 1983, p 300.
    [40] fenollosa, R.; Meseguer, F.; Tymczenko, M. Adv Mater 2008, 20, 95.
    [41] Gottardo, S.; Sapienza, R.; Garcia, P. D.; Blanco, A.; S., W. D.; Lopez, C. Nat. Photon. 2008, 2, 429.
    [42] Ausman, L. K.; Schatz, G. C. J. of Chem. Phys. 2008, 129, 054704.
    [43] White, I. M.; Hanumegowda, M.; Fan, X. Opt. Lett. 2005, 30, 3189.
    [44] Zhang, Q.; Chou, T. P.; Russo, B.; Jenekhe, S. A.; Cao, G. Angew. Chem. Int. Ed. 2008, 47, 2402.
    [45] Chou, T. P.; Zhang, Q.; Fryxell, G. E.; Cao, G. Adv Mater 2007, 19, 2588.
    [46] Rothenberger, G.; Comte, P.; Gratzel, M. Sol. Energy Mater. Sol. Cells 1999, 58, 321.
    [47] Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Gratzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.
    [48] Zhang, Q.; Chou, T. P.; Russo, B.; Jenekhe, S. A.; Cao, G. Adv. Funct. Mater. 2008, 18 1654.
    [49] Braun, G.; Pavel, I.; Morrill, A. R.; Seferos, D. S.; Bazan, G. C.; Reich, N. O.; Moskovits, M. J. Am. Chem. Soc. 2007, 129, 7760.
    [50] White, I. M.; Zhu, H.; Suter, J. D.; Hanumegowda, N. M.; Oveys, H.; Zourob, M.; Fan, X. IEEE Sensors J. 2007, 7, 28.
    [51] White, I. M.; Hanumegowda, N. M.; Fan, X. Opt. Lett. 2005, 30, 3189.
    [52] Armani, A. M.; Kulkarni, R. P.; Fraser, S. E.; Flagan, R. C.; J., V. K. Science 2007, 317, 783.
    [53] Zhu, H.; White, I. M.; Suter, J. D.; Dale, P. S.; Fan, X. Opt. Express 2007, 15, 9139.
    [54] Hanumegowda, N. M.; White, I. M.; Fan, X. Sensors and Actuators B 2006, 120, 207.
    [55] Muthuswamy, S. K.; Li, D. M.; Lelievre, S.; Bissell, M. J.; Brugge, J. S. Nat. Cell Biol. 2001, 3, 785.
    [56] Kim, J. Y.; Sun, Q.; Oglesbee, M.; Yoon, S. O. J. Neurosci. 2003, 23, 5561.
    [57] Porter, A. C.; Vaillancourt, R. R. Oncogene 1998, 17, 1343.
    [58] Ullrich, A.; Schlessinger, J. Cell 1990, 61, 203.
    [59] Burgess, A. W.; Cho, H. S.; Eigenbrot, C.; Ferguson, K. M.; Garrett, T. P. J.; Leahy, D. J.; Lemmon, M. A.; Sliwkowski, M. X.; Ward, C. W.; Yokoyama, S. Mol. Cell 2003, 12, 541.
    [60] Ogiso, H.; Ishitani, R.; Nureki, O.; Fukai, S.; Yamanaka, M.; Kim, J. H.; Saito, K.; Sakamoto, A.; Inoue, M.; Shirouzu, M.; Yokoyama, S. Cell 2002, 110, 775.
    [61] Garrett, T. P. J.; McKern, N. M.; Lou, M. Z.; Elleman, T. C.; Adams, T. E.; Lovrecz, G. O.; Zhu, H. J.; Walker, F.; Frenkel, M. J.; Hoyne, P. A.; Jorissen, R. N.; Nice, E. C.; Burgess, A. W.; Ward, C. W. Cell 2002, 110, 763.
    [62] Ward, C. W.; Hoyne, P. A.; Flegg, R. H. Proteins: Struct. Funct. Genet. 995, 22, 141.
    [63] Abe, Y.; Odaka, M.; Inagaki, F.; Lax, I.; Schlessinger, J.; Kohda, D. J. Biol. Chem. 1998, 273, 11150.
    [64] Cho, H.-S.; Mason, K.; Ramyar, K. X.; Stanley, A. M.; Gabelli, S. B.; Denney Jr, D. W.; Leahy, D. J. NATURE 2003, 421, 756.
    [65] Lemmon, M. A.; Bu, Z.; Ladbury, J. E.; Zhou, M.; Pinchasi, D.; Lax, I.; Engelman, D. M.; Schlessinger, J. EMBO J. 1997, 16, 281.
    [66] Garrett, T. P. J.; McKern, N. M.; Lou, M.; Elleman, T. C.; Adams, T. E.; Lovrecz, G. O.; Zhu, H.-J.; Walker, F.; Frenkel, M. J.; Hoyne, P. A.; Jorissen, R. N.; Nice, E. C.; Burgess, A. W.; Ward, C. W. Cell 2002, 110, 763.
    [67] Yarden, Y.; Sliwkowski, M. X. Mol. Cell. Biol. 2001, 2, 127.
    [68] Menard, S.; Casalini, P.; Campiglio, M.; Pupa, S. M.; Tagliabue, E. Cell. Mol. Life Sci. 2004, 61, 2965.
    [69] Porter, A. C.; Vaillancourt, R. R. Oncogene 1998, 16.
    [70] Olayioye, M. A.; Neve, R. M.; Lane, H. A.; Hynes, N. E. EMBO J. 2000, 19, 3159.
    [71] Ross, J. S.; Fletcher, J. A.; Bloom, K. J.; Linette, G. P.; Stec, J.; Symmans, W. F.; Pusztai, L.; Hortobagyi, G. N. Mol. Cell Proteomics 2004, 3, 379.
    [72] Yarden, Y. European Journal of Cancer 2001, 37, S3.
    [73] Karunagaran, D.; Tzahar, E.; Beerli, R. R.; Chen, X. M.; Graus-Porta, D.; J., R. B. EMBO J. 1996, 15, 254.
    [74] Harari, D.; Yarden, Y. Oncogene 2000, 19, 6102.
    [75] Jiang , C.; Wei, M.; Qi, Z.; Kudo, T.; Honmaa, I.; Zhoua, H. J Power Sources 2007, 166, 239.
    [76] ubramanian, V. S.; Karki, A.; Gnanasekar, K. I.; Eddy, F. P.; Rambabu, B. J Power Sources 2006, 159, 186.
    [77] Oh, S. W.; Park, S.-H.; Sun, Y.-K. J Power Sources 2006, 161.
    [78] Kim, D. H.; Ryu, H. W.; Moon, J. H.; Kim, J. J Power Sources 2006, 163, 196.
    [79] Gao, X.; Zhu, H.; Pan, G.; Ye, S.; Lan, i.; Wu, F.; Song, D. J. Phys. Chem. B 2004, 108.
    [80] Zhang, H.; Li, G. R.; An, L. P.; Yan, T. Y.; Gao, X. P.; Zhu, H. Y. J. Phys. Chem. C 2007, 111.
    [81] Wang, Y.; Wu, M.; Zhang, W. F. Electrochimica Acta 2008, 53.
    [82] Xu, J.; Jia, C.; Cao, B.; Zhang, W. F. Electrochimica Acta 2007, 52.
    [83] Zhou, Y.-k.; Cao, L.; Zhang, F.-b.; He, B.-l.; Liz, H.-l. J. Electrochemical Society 2003, 150, A1246.
    [84] Wang, K.; Wei, M.; Morris, M. A.; Zhou, H.; Holmes, J. D. Adv. Mater. 2007, 19, 3016.
    [85] Kubiak, P.; Geserick, J.; Husing, N.; Wohlfahrt-Mehrens, M. J Power Sources 2008, 175, 510.
    [86] SALVATORE-ARICO, A.; BRUCE, P.; SCROSATI, B.; TARASCON, J.-M.; SCHALKWIJK, W. V. Nat. Mater. 2005, 4, 366.
    [87] Hu, Y.-S.; Kienle, L.; Guo, Y.-G.; Maier, J. Adv. Mater. 2006, 18, 1421.
    [88] Kavan, L.; Kalba, M.; Zukalova, M.; Exnar, I.; Lorenzen, V.; Nesper, R.; Graetzel, M. Chem. Mater. 2004, 16, 477.
    [89] Wagemaker, M.; Borghols, W. J. H.; Mulder, F. M. J. Am. Chem. Soc. 2007, 129, 4323.
    [90] Meethong, N.; Huang, H.-Y. S.; Carter, W. C.; Chiang, Y.-M. Electrochemical and Solid-State Letters 2007, 10.
    [91] Krtila, P.; Fattakhovaa, D.; Kavana, L.; Burnsideb, S.; Gratzel, M. Solid State Ionics 2000, 135, 101.
    [92] Jiang, C.; Honma, I.; Kudo, T.; Zhouz, H. Electrochem. and Solid State Lett. 2007, 10, A127.
    [93] Qiao, H.; Wang, Y.; Xiao, L.; Zhang, L. Electrochem. Commun. 2008, 10, 1280.
    [94] Reddy, M. A.; Kishore, M. S.; Pralong, V.; Caignaert, V.; Varadaraju, U. V.; Raveau, B. Electrochem. Commun. 2006, 8, 1299.
    [95] Kaper, H.; Endres, F.; Djerdj, I.; Antonietti, M.; Smarsly, B. M.; Maier, J.; Hu, Y.-S. small 2007, 3, 1753.
    [96] Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W. Solid State Ionics 2003, 157, 35.
    [97] Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W. Phys. Rev. Lett. 2001, 86, 1275.
    [98] Lutzenkirchen-Hecht, D.; Wagemaker, M.; Keil a, P.; van Well, A. A.; Frahm, R. Surf. Sci. 2003, 538, 10.
    [99] Li, J.; Tang, Z.; Zhang, Z. Chem. Phys. Lett. 2005, 418, 502.
    [100] Zukalov, M.; Kalbc, M.; Kavan, L.; Exnar, I.; Graetzel, M. Chem. Mater. 2005, 17, 1248.
    [101] Wei, M.; Wei, K.; Ichihara, M.; Zhou, H. Electrochem. Commun.s 2008, 10, 1164.
    [102] Li, J.; Tang, Z.; Zhang, h. Electrochemistry Commun. 2005, 7, 62.
    [103] Armstrong, A. R.; Armstrong, G.; Canales, J.; Bruce, P. G. Angew. Chem. Int. Ed. 2004, 43, 2286.
    [104] Armstrong, G.; Armstrong, A. R.; Canales, J.; Bruce, P. G. Chem. Commun. 2005, 2454.
    [105) Li, Q.; Zhang, J.; Liu, B.; Li, M.; Liu, R.; Li, X.; Ma, H.; Yu, S.; Wang, L.; Zou, Y.; Li, Z.; Zou, B.; Cui, T.; Zou, G. Inorg. Chem. 2008, 47, 9870.
    [106] Reddy, M. A.; Kishore, M. S.; Pralong, V.; Varadaraju, U. V.; Raveau, B. Electrochem. Solid-State Lett. 2007, 10, A29.
    [107] Noailles, L. D.; Johnson, C. S.; Vaughey, J. T.; Thackeray, M. M. J Power Sources 1999, 81, 259.
    [108] Kuhn, A.; Amandi, R.; Garcia-Alvarado, F. J Power Sources 2001, 92, 221.
    [109] Hibino, M.; Abeb, K.; Mochizuki, M.; Miyayama, M. J Power Sources 2004, 126, 139.

    Chapter 3
    [1] J. Rybczynski, U. Ebels, M. Giersig, Colloid Surf. A – Physicochem. Eng. Asp. 2003, 219, 1
    [2] W. Yoshida, R. P. Castro, J.D. Jou, Y. Cohen, Langmuir 2001, 17, 5882.
    [3] L. Ye, R. Pelton, M. A. Brook, Langmuir 2007, 23, 5630.
    [4] D. H. Spackman, W. H. Stein, S. Moore, Anal. Chem. 1958, 30, 1190.
    [5] S. Moore, D. H. Spackman, W. H. Stein, Anal. Chem. 1958, 30, 1185.

    Chapter 4
    [1] Tsai, M. C.;Tsai, T. L.; Lin C. T.; Chung, R. J.; Sheu, H. S.; Chiu, H. T.; Lee, C. Y. J. Phys. Chem. C 2008, 112, 2697.
    [2] Sanchez, C.; Livage, J. New J. Chem. 1990, 14, 513.
    [3] Nakahira, A.; Kato, W.; Tamai, M.; Isshiki, T.; Nishio, K.; Aritani, H. J Mater Sci 2004, 39, 4239.
    [4] Du, G. H.; Chen, Q.; Han, P. D.; Yu, Y.; Peng, L. M. Phys. Rev. B 2003, 67.
    [5] Morgado, E.; de Abreu, M. A. S.; Moure, G. T.; Marinkovic, B. A.; Jardim, P. M.; Araujo, A. S. Chem. Mater. 2007, 19, 665.
    [6] Sauvet, A. L.; Baliteau, S.; Lopez, C.; Fabry, P. J. Solid State Chem. 2004, 177, 4508.
    [7] Gong, X. Q.; Selloni A. J. Catal. 2007. 249. 134.
    [8] Tanner, R. E.; Sasahara, A.; Liang, Y.; Altman, E. I.; Hiroshi, O. J. Phys. Chem. B 2002, 106, 8211.
    [9] Gong, X. Q.; Selloni, A.; Vittadini, A. J. Phys. Chem. B. 2006, 110, 2804.
    [10] Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Gratzel M. J. Phys. Chem. B 2000, 104, 1300.
    [11] Rotzinger, F. P.; Kesselman-Truttmann, J. M.; Hug, S. J.; Shklover, V.; Gratzel, M. J. Phys. Chem. B 2004, 108, 5004.
    [12] Hayden, B. E.; King, A.; Newton, M. A. J. Phys. Chem. B 1999, 103, 203.
    [13] Andersson, M.; Kiselev, A.; Osterlund, L.; Palmqvist, A. E. C. J. Phys. Chem. C 2007, 111, 6789.
    [14] Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. Adv. Mater. 2006, 18, 1421.
    [15] Jiang, C.; Wei, M.; Qi, Z.; Kudo, T.; Honma, I.; Zhou, H. J. Power Sources 2007, 166, 239.
    [16] Wagemaker, M.; Borghols, W. J. H.; Mulder, F. M. J. Am. Chem. Soc. 2007, 129, 4323.
    [17] Wagemaker, M.; Borghols, W. J. H.; van Eck, E. R. H.; Kentgens, A. P. M.; Kearley, G. J.; Mulder F. M. Chem. Eur. J. 2007, 13, 2023.
    [18] Wagemaker, M.; Kentgens, A. P. M., Mulder F. M. Nature, 2002, 418, 397.
    [19] Armstrong, R. A.; Armstrong, G.; Canales, J.; Bruce, P. G. J. Power Sources 2005, 146, 501.
    [20] Prosini, P. P.; Mancini, R.; Petrucci, L.; Contini, V.; Villano, P.; Solid State Ionics 2001, 144, 185.
    [21] Hu, Y. S.; Adelhelm, P.; Smarsly, B. M.; Hore, S.; Antonietti, M.; Maier, J. Adv. Funct. Mater. 2007, 17, 1873.
    [22] Mabuchi, A.; Tokumits, K.; Fujimoto, H.; Kasuh, T. J. Electrochem. Soc. 1995, 142, 1041.
    [23] Zheng, T.; McKinnon, W. R.; Dahn, J. R. J. Electrochem. Soc. 1996, 143, 2137.

    Chapter 6
    [1] D. D. Dunuwila, C. D. Gagliardi, K. A. Berglund, Chem. Mater. 1994, 6, 1556.
    [2] S. Doerff, Y. Dromzee, C. Sanchez, C. C. R. Acad. Paris 1989, 308, 1409.
    [3] I. Laaziz, C. D. Gagliardi, J. Durand, L. Cot, J. Joffre, Acta, Crystallogr., Sect. C 1990, 46, 2332.
    [4] K. G. Severin, J. S. Ledford, B. A. Torgerson, K. A. Berglund, Chem. Mater. 1994, 6, 890.
    [5] T. J. Boyle, C. J. Tafoya, B. L. Scott, Abstr. Pap.- Am. Chem. Soc. 1996, 211 (part 1), 62-INOR.
    [6] Y. Xia, B. Gates, Y. Yin, Y. Lu, Adv. Mater. 2000, 12, 693.
    [7] M. Ocana, R. Rodriguez-Clemente, C. J. Serna, Adv. Mater. 1995, 7, 212.
    [8] E. Rabani, S. A. Egorov, J. Chem. Phys. 2001, 115, 3437.
    [9] E. Rabani, S. A. Egorov, Nano. Lett. 2002, 2, 69.
    [10] Y. Qin, K. A. Fichthorn, J. Chem. Phys. 2003, 119, 9745.
    [11] H. Zhang, M. Finnegan, J. F. Banfield, Nano. Lett. 2001, 1, 81.
    [12] S. Yamabi, H. Imai, Chem. Mater. 2002, 14, 609.
    [13] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
    [14] M. Wu, G. Lin, D. Chen, G. Wang, D. He, S. Feng, R. Xu, Chem. Mater. 2002, 14, 1974.
    [15] G. Colón, J.M. Sánchez-España, M.C. Hidalgo, J.A. Navío J. Photochem. Photobiol. A-Chem. 2006, 179, 20.
    [16] acetic acid: Ka 1.74-5, butyric acid: Ka 1.48-5, octanoic acid: Ka 1.29-5.
    [17] P. A. Venz, J. T. Kloprogge, R. L. Frost, Langmuir 2000, 16, 4962.
    [18] J. W. Olesik, J. A. Kinzer, Spectroc. Acta Pt. A 2006, 61, 696.
    [19] J. Rybczynski, U. Ebels, M. Giersig, Colloid Surf. A – Physicochem. Eng. Asp. 2003, 219, 1
    [20] C. B. Richardson, R. L. Hightower, A. L. Pigg, Appl. Opt. 1986, 25,1226.
    [21] P. Laven, MiePlot 3.5.01 http://www.philiplaven.com/mieplot.htm
    [22] S. G. Jennings, R. G. Pinnick, H. J. Auvermann, Appl. Opt. 1978, 24, 3922.

    Chapter 7
    [1] S. M. Scholz, R. Vacassy, J. Dutta, H. Hofmann, M. Akinc, J. Appl. Phys. 1998, 83, 7860.
    [2] R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, D. S. Wiersma, Phys. Rev. Lett. 2007, 99, 233902.
    [3] J. M. Tedder, A. Nechvatal, A. W. Murray, J. Carnduff, Amino acids and proteins. in Basic organic chemistry. London: John Wiley & Sons, Chaper 6, pp. 305-342 (1972).
    [4] F. P. Rotzinger, J. M. Kesselman-Truttmann, S. J. Hug, V. Shklover, M. Gratzel, J. Phys. Chem. B 2004, 108, 5004.
    [5] D. H. Spackman, W. H. Stein, S. Moore, Anal. Chem. 1958, 30, 1190.
    [6] S. Moore, D. H. Spackman, W. H. Stein, Anal. Chem. 1958, 30, 1185.
    [7] H. Ogiso, R. Ishitani, O. Nureki, S. Fukai, M. Yamanaka, J. H. Kim, K. Saito, A. Sakamoto, M. Inoue, M. Shirouzu, S. Yokoyama, Cell 2002, 110, 775.
    [8] T. P. J. Garrett, N. M. McKern, M. Z. Lou, T. C. Elleman, T. E. Adams, G. O. Lovrecz, H. J. Zhu, F. Walker, M. J. Frenkel, P. A. Hoyne, R. N. Jorissen, E. C. Nice, A. W. Burgess, C. W. Ward, Cell 2002, 110, 763.
    [9] Y. Krishnamachari, M. E. Pearce, A. K. Salem, Adv. Mater. 2008, 20, 989.
    [10] O. Livnah, E. A. Bayer, M. Wilchek, J. L. Sussman, P. Natl. Acad. Sci. USA 1993, 90, 5076.
    [11] A. W. Burgess, H. S. Cho, C. Eigenbrot, K. M. Ferguson, T. P. J. Garrett, D. J. Leahy, M. A. Lemmon, M. X. Sliwkowski, C. W. Ward, S. Yokoyama, Mol. Cell 2003, 12, 541.

    Additional work
    [1] Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science. 2001, 291, 1947.
    [2] Hughes, W. L.; Wang, Z. L. J. Am. Chem. Soc. 2004, 126, 6703.
    [3] Gao, P.; Wang, Z. L. J. Phys. Chem. B. 2002, 106, 12655.
    [4] Dai, Z. R.; Pan, Z. W.; Wang, Z. L. J. Am. Chem. Soc. 2002, 124, 8673.
    [5] Shen, S.; Hidajat, K.; Yu, L. E.; Kawi, S. Adv. Mater. 2004, 16, 541.
    [6] Bao, J.; Xu, D.; Zhou, Q.; Xu, Z. Chem. Mater. 2002, 14, 4709.
    [7] Woo, K.; Jin, H.; Ahn, J. P.; Park, Y. S. Adv. Mater. 2003, 15, 1761.
    [8] Duan, X.; Lieber, C. M. J. Am. Chem. Soc. 2000, 122, 188.
    [9] Itoh, Y.; Matsusaki, M.; Kida, T.; Akashi, M. Chem Lett, 2004, 33, 1552.
    [10] Jeong, U.; Xia, Y. Adv. Mater. 2005, 17, 102.
    [11] Bao, J.; Tie, C.; Xu, Z.; Zhou, Q.; Shen, D.; Ma, Q. Adv. Mater. 2001, 13, 1631.
    [12] Kim, D. H.; X.; Lin, Jia, Z.; Guarini, K. W.; Russell, T. P. Adv. Mater. 2004, 16, 702.
    [13] Mu, C.; Yu, Y.; Wang, R.; Wu, K.; Xu, D.; Guo, G. Adv. Mater. 2004, 16, 1550.
    [14] Kijima, T.; Yoshimura, T.; Uota, M.; Ikeda, T.; Fujikawa, D.; Mouri, S.; Uoyama, S. Angew. Chem. 2003, 116, 230; Angew. Chem. Int. Ed. 2003, 43, 228.
    [15] Mayers, B.; Jiang, X.; Sunderland, D.; Cattle, B.; Xia, Y. J. Am. Chem. Soc. 2003, 125, 13364.
    [16] Goldberger, J.; Hochbaum A. I.; Fan, Rong.; Yang, P. Nano Lett. 2006, ; Schmidt, V.; Riel, H.; Senz, S.; Karg, S.; Riess, W.; Gcsele, U.; Small 2006, 2, 85.
    [17] Qu, L.; Shi, G.; Wu, X.; Fan, B. Adv. Mater. 2004, 16, 1200.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE