簡易檢索 / 詳目顯示

研究生: 林志偉
Lin, Chih-Wei
論文名稱: 不歸還取樣模式下之生物多樣性估計
Estimation of Biodiversity in Sampling without Replacement
指導教授: 趙蓮菊
Chao, Anne
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 138
中文關鍵詞: 不歸還取樣超幾何分配種類數
外文關鍵詞: sampling without replacement, hypergeometric distribution, species richness
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般野外調查可分為歸還及不歸還抽樣模式,過去的文獻主要都是架
    構在歸還取樣模式下估計群落的種類數,對於不歸還取樣模式下之種
    類數估計文獻較少且估計亦較複雜。如何透過統計方法,提供不歸還
    取樣模式下之生物多樣性估計便是本文的研究主題。本論文主要分成
    兩大部分,第一部份為單一群落之多樣性探討,主題包括種類數、樣
    本數及種類預測函數估計。第二部分為多群落之多樣性探討,主題包
    含二群及三群落以上之共同種類數估計。
    (一) 單一群落的多樣性探討
    種類數估計
    種類數是單一群落最直覺的多樣性指標,過去文獻主要是架
    構在歸還取樣模式下進行估計,對於不歸還抽樣模式下之文
    獻則並不多,並且估計量也較複雜。本文主要是利用科西-史
    瓦滋不等式,提出不歸還取樣模式下之種類數估計及其變異
    數估計,此估計量形式簡潔可更易於生態學家所使用。
    樣本數估計
    樣本數估計一直是生態學家所感興趣的問題,大多數的統計
    方法只求得了種類數的估計及變異數,但極少指出需要再抽
    多少的樣本才能看到原先樣本所估計的種類數。關於此類的
    問題相關文獻並不多,本文則是架構在不歸還取樣模式下,
    提供樣本數之估計量及其變異數估計。
    種類預測函數估計
    種類預測函數可評估再次取樣之效益,主要問題是利用第一
    次基礎樣本的訊息來預測第二次抽樣可能出現的新種類數。
    過去文獻主要都是架構在歸還取樣的方式下推導其估計量,
    本文主要是架構在不歸還取樣模式下,將過去表現較佳的種
    類預測函數估計量推廣至此模式下,並提供其變異數估計。
    (二) 多群落之多樣性探討
    多群落的比較亦是生態上另一個重要的課題,包含探討同一個地
    區不同時間點的變化或同一座森林不同緯度物種的變化,亦可探
    討不同地區的群落差異。早期的文獻,有關共同種類數的估計方
    法較少深入探討,傳統作法都是直接以出現在樣本中的共同種類
    數當作估計值,此種估計明顯嚴重低估。對於架構在不歸還取樣
    模式下,至目前為止對於多群落之共同種類數估計方法尚無相關
    文獻,本文主要提供二群落及三群落以上之共同種類數估計及其
    變異數估計。
    本文除了理論推導所提出之種類數估計量外,並且以電腦模擬比較本
    文的方法與過去文獻上的其它方法。對於樣本數、種類預測函數及多
    群落共同種類數主題,亦提供電腦模擬以瞭解其估計量的表現。對於
    不同主題,本文亦附加一些合適的實例分析,以說明其應用方式。


    第一章 緒論 001 第二章 模式與符號介紹及相關文獻回顧 006 2.1 模式與符號介紹 006 2.1.1 抽樣方法及模式假設 006 2.1.2 符號定義 009 2.2 單一群落相關文獻回顧 014 2.2.1 種類數估計 014 2.2.2 種類預測函數估計 025 2.3 多群落相關文獻回顧 027 第三章 單一群落相關主題 030 3.1 種類數估計 030 3.1.1 種類數下界估計量 031 3.1.2 模擬研究與討論 037 3.1.3 實例分析 061 3.2 樣本數估計 066 3.2.1 樣本數估計量 066 3.2.2 模擬研究與討論 070 3.2.3 實例分析 082 3.3 種類預測函數估計 084 3.3.1 種類預測函數估計量 084 3.3.2 模擬研究與討論 086 3.3.3 實例分析 101 第四章 多群落相關主題 105 4.1 共同種類數估計 105 4.1.1 二群落共同種類數下界估計量 105 4.1.2 三群落共同種類數下界估計量 109 4.2 模擬研究與討論 113 4.2.1 二群落模擬研究與討論 113 4.2.2 三群落模擬研究與討論 121 4.3 實例分析 128 第五章 結論 130 參考文獻 133

    [1] Abdul Rahim, N., Nur Supardi, N., Manokaran, M. N., Davies, S. J.,
    La Frankie, J. V., Ashton, P. S., and Okuda, T. ( 2004 ) ,
    Demographic tree data from the 50-ha Pasoh Forest Dynamics Plot.
    CTFS Forest Dynamics Plot Data Series. CD-ROM. Kepong,
    Malaysia.
    [2] Boneh, S., Boneh, A., and Caron, R. J. (1998), Estimating the
    prediction function and the number of unseen species in sampling
    with replacement. Journal of the American Statistical Association 93,
    372–379.
    [3] Bunge, J., and Fitzpatrick, M. (1993), Estimating the number of
    species: a review. Journal of the American Statistical Association 88,
    364-373.
    [4] Burnham, K. P. and Overton, W. S. (1978), Estimation of the size
    of a closed population when capture probabilities vary among
    animals. Biometrika 65, 625-633.
    [5] Chao, A. (1984), Nonparametric estimation of the number of classes
    in a population. Scandinavian Journal of Statistics 11, 265-270.
    [6] Chao, A. (1989), Estimating population size for sparse data in
    capture-recapture experiments. Biometrics 45, 427-438.
    [7] Chao, A. (2005), Species estimation and applications. Encyclopedia
    of Statistical Sciences, 2nd Edition, Vol. 12, 7907-7916, (N.
    Balakrishnan, C. B. Read and B. Vidakovic, eds) Wiley, New York.
    [8] Chao, A. and Bunge, J. (2002), Estimating the number of species in
    a stochastic abundance model. Biometrics 58, 531-539.
    [9] Chao, A., Colwell, R. K., Lin, C.-W. and Gotelli, N. J. (2009),
    Sufficient sampling for asymptotic minimum species richness
    estimators. Ecology 90, 1125-1133.
    [10] Chao, A., Hwang, W.-H., Chen, Y.-C. and Kuo, C.-Y. (2000),
    Estimating the number of shared species in two communities.
    Statistica Sinica 10, 227-246.
    [11] Chao, A. and Lee, S-M. (1992), Estimating the number of classes
    via sample coverage. Journal of American Statistical Association 87,
    210-217.
    [12] Chao, A., Li, P.-C., Agatha, S. and Foissner, W. (2006), A statistical
    approach to estimate soil ciliate diversity and distribution based on
    data from five continents. Oikos 114, 479-493.
    [13] Chao, A. Ma, M.-C. and Yang, M. C. K. (1993), Stopping rule and
    estimation for recapture debugging with unequal detection rates.
    Biometrika 80, 193-201.
    [14] Chao, A. and Shen, T.-J. (2004), Non-parametric prediction in
    species sampling. Journal of Agricultural, Biological and
    Environmental Statistics 9, 253-269.
    [15] Chao, A., Shen, T.-J. and Hwang, W.-H. (2006), Application of
    Laplace's boundary-mode approximations to estimate species and
    shared species richness. Australian and New Zealand Journal of
    Statistics 48, 117-128.
    [16] Condit, R., Hubbell, S. P. and Foster, R. B. (1996), Changes in a
    tropical forest with a shifting climate: results from a 50 ha permanent
    census plot in Panama. Journal of Tropical Ecology 12, 231-256.
    [17] Darroch, J. N. and Ratcliff, D. (1980), A note on capture-recapture
    -135-
    estimation. Biometrics 36, 149-153.
    [18] Efron, B., and Thisted, R. (1976), Estimating the number of unseen
    species: how many words did Shakespeare know? Biometrika 63,
    435-447.
    [19] Emanuel, W. R., Shugart, H. H. and Stevenson, M. P.(1985),
    Climatic change and the borad-scale distribution of terrestiral
    ecosystem complexes. Climatic change 7, 457-460.
    [20] Esty, W. (1982), Confidence intervals for the coverage of low
    coverage samples. The Annals of Statistics 10, 190-196.
    [21] Esty, W. (1985), Estimation of the number of classes in a
    population and the coverage of a sample. Mathematical Scientist 10,
    41-50.
    [22] Fisher, R. A., Steven-Corbet, A. and Williams, C. B. (1943), The
    relation between the number of species and the number of individuals
    in a random sample of an animal population. Journal of Animal
    Ecology 12, 42-58.
    [23] Good, I. J. (1953), The population frequencies of species and the
    estimation of population parameters. Biometrika 40, 237-264.
    [24] Good, I. J. (2000), Turing’s anticipation of empirical Bayes in
    connection with the cryptanalysis of the naval Enigma. Journal of
    Statistical Computation and Simulation 66, 101-111.
    [25] Goodman, L. A. (1949), On the estimation of the number of classes
    in a population. Annals of Mathematical Statistics 20, 572-579.
    [26] Gray, H. L., and Schucany, W. R. (1972), The generalized jackknife
    statistic, New York: Marcel Dekker.
    [27] Hansen, J. and Lebedeff, S. (1987), Global trends of measured
    -136-
    surface air temperature. Journal of Geophysical Research 92,
    13345-13372.
    [28] Harris, B. ( 1959 ) , Determining bounds on integrals with
    applications to cataloging problems. Annals of Mathematical
    Statistics 30, 521-548.
    [29] Haas, P. J., Liu, Y. and Stokes, L. (2006), An estimator of number of
    species from quadrat sampling. Biometrics 62, 135-141.
    [30] Haas, P. J. and Stokes, S. L. (1998), Estimating the number of
    classes in a finite population. Journal of the American Statistical
    Association 93, 1475–1487.
    [31] Hellmann, J. J., and Fowler, G. W. (1999), Bias, precision, and
    accuracy of four measures of species richness. Ecological
    Applications 9, 824-834.
    [32] Keating, K. A., Quinn, J. F., Ivie, M. A., and Ivie, L. L. (1998),
    Estimating the effectiveness of further sampling in species
    inventories. Ecological Applications 8, 1239-1249.
    [33] Kochummen, K. M., LaFrankie, J. V. and Manokaran, N. (1990),
    Floristic composition of Pasoh Forest Reserve, a lowland rain forest
    in Peninsular Malaysia. Journal of Tropical Forest Science 3, 1-13.
    [34] Lawton, J. H., Bignell, D. E. and Bolton, B. (1998), Biodiversity
    inventories, indicator taxa, and effects of habitati modification in
    tropical forest. Nature 391, 72-76.
    [35] Lee, S.-M. and Chao, A. (1994), Estimating population size via
    sample coverage for closed capture-recapture models. Biometrics 50,
    88-97.
    [36] Longino, J. T., and Colwell, R. K. (1997), Biodiversity assessment
    -137-
    using structured inventory: Capturing the ant fauna of a lowland
    tropical rainforest. Ecological Applications 7, 1263-1277.
    [37] Longino, J. T., Coddington, J. and Colwell, R. K. (2002), The ant
    fauna of a tropical rain forest: estimating species richness three
    different ways. Ecology 83, 689-702.
    [38] Magnussen, S., R. Pelissier, F. He, and Ramesh, B. R. (2006), An
    assessment of sample based estimators of tree species richness in two
    wet tropical forest compartments in Panama and India. International
    Forestry Review 8, 417-431.
    [39] Miller, R. I. and Wiegert, R. G. (1989), Documenting completeness
    species-area relations, and the species-abundance distribution of a
    regional flora. Ecology 70, 16-22.
    [40] Mingoti, S. A., and Meeden, G. (1992), Estimating the total number
    of distinct species using presence and absence data. Biometrics 48,
    863-875.
    [41] Norden, N., Chazdon, R., Chao, A., Jiang, Y.-H. and
    Vilchez-Alvarado, B. (2009), Resilience of tropical rain forests:
    rapid tree community reassembly in secondary forests. Ecology
    Letters 12, 385-394.
    [42] Pan, H. Y., Chao, A. and Foissner, W. (2009), A non-parametric
    lower bound for the number of species shared by multiple
    communities. To appear in Journal of Agricultural, Biological and
    Environmental Statistics.
    [43] Schreuder, H. T., Williams, M. S. and Reich, R. M. (1999),
    Estimating the number of tree species in a forest community using
    survey data. Environmental Monitoring and Assessment 56, 293-303.
    -138-
    [44] Shen, T, -J., Chao, A and Lin, J.-F. (2003), Predicting the number of
    new species in a further taxonomic sampling. Ecology 84, 798-804.
    [45] Shen, T.-J. and He, F. (2008), An incidence-based richness estimator
    for quadrats sampled without replacement. Ecology 89, 2052-2060.
    [46] Shlosser, A. (1981), On estimation of the size of the dictionary of a
    long text on the basis of a sample. Engineering Cybernetics 19,
    97-102.
    [47] Solow, A. R., and Polasky, S. (1999), A quick estimator for
    taxonomic surveys. Ecology 80, 2799-2803.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE