研究生: |
張君漢 |
---|---|
論文名稱: |
二氧化鈦與二氧化鉿薄膜(TiO2/HfO2) 雙層式電阻記憶體特性研究 Characteristics of TiO2 and HfO2 thin films for bilayer-structured resistive switching memory application |
指導教授: | 甘炯耀 |
口試委員: |
黃振昌
甘炯耀 熊昌鉑 吳德清 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 雙層式電阻記憶體 、二氧化鈦 、二氧化鉿 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電阻式記憶體因具有快速的讀寫能力以及長久的資料保存時間,且元件微縮度高,在新式非揮發記憶體的研究上受到矚目。但是,電阻式記憶體仍有許多需要改進的地方,其中最大的問題在於電阻轉換因子(如轉換電壓與高低阻態等)的不穩定分布。為了解決這個問題,學者們紛紛構思新的製程與方法,例如離子摻雜、嵌入奈米級晶體、雙層式結構……等,皆獲得不錯的效果。其中,於上下電極之間堆疊兩層固態電解質薄膜的雙層式結構,因製程簡單方便,可在全室溫環境下製作,而成為改善元件轉換特性的重要指標。
本研究採用室溫製程,以TiO2與HfO2作為固態電解質材料,並使用射頻磁控濺鍍法分別製作了單層的Pt/TiO2/W、Pt/HfO2/W,以及雙層的Pt/TiO2/HfO2/W等電阻式記憶體,並進行電性量測。在比較單層與雙層結構之間的差異後,我們藉由改變固態電解質厚度與薄膜倒置堆疊等方法,獲得了雙層式元件最佳的實驗參數。最後,將量測所得的數據進行整理,我們推導出雙層式結構內部的導電微通道成長模型,以及雙極性轉換機制圖,以闡明元件的電阻轉換原理。
從實驗結果,我們可以歸納出幾點結論:(一)單層式元件由於高低阻態的變動性過大,無法進行長次數的電阻轉換;利用雙層固態電解質堆疊的結構,可以有效改善元件電阻態分布不均的問題。(二)對雙層式元件進行厚度參數的變化後,我們得到Pt/TiO2(40 nm)/HfO2(40 nm)/W的元件具有最佳的轉換行為,且此元件在85。C下可擁有約2 × 104秒以上的資料儲存時間。(三)利用氧空缺導電通道成長模型,可說明雙層式結構能夠抑止多條平行導電絲生成,促使單一導電絲斷裂與再生成行為的局部區域化。(四)Pt/dielectric/W類型的RRAM元件,在正負偏壓下的電致現象皆為空間電荷限制電流機制,但兩者使電子流動的方式與過程並不相同,這個現象主要是由於上下電極之間的功函數差值所致。
1. Sawa, A., Resistive switching in transition metal oxides. Materials Today, 2008. 11(6): p. 28-36.
2. Waser, R. and M. Aono, Nanoionics-based resistive switching memories. Nat Mater, 2007. 6(11): p. 833-840.
3. Lee, H.Y., et al. Evidence and solution of over-RESET problem for HfOx based resistive memory with sub-ns switching speed and high endurance. in Electron Devices Meeting (IEDM), 2010 IEEE International. 2010.
4. Jung, S., et al., Flexible resistive random access memory using solution-processed TiOx with Al top electrode on Ag layer-inserted indium-zinc-tin-oxide-coated polyethersulfone substrate. Applied Physics Letters, 2011. 99(14): p. 142110.
5. Gee Kim, W., et al., Dependence of the Switching Characteristics of Resistance Random Access Memory on the Type of Transition Metal Oxide; TiO2, ZrO2, and HfO2. Journal of The Electrochemical Society, 2011. 158(4): p. H417.
6. Zhuge, F., et al., Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology, 2011. 22(27): p. 275204.
7. Lee, M.-J., et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures. Nat Mater, 2011. 10(8): p. 625-630.
8. Meijer, G.I., Materials science. Who wins the nonvolatile memory race? Science, 2008. 319(5870): p. 1625-6.
9. Lee, H.Y., et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. in Electron Devices Meeting, 2008. IEDM 2008. IEEE International. 2008.
10. Muller, G., et al. Status and outlook of emerging nonvolatile memory technologies. in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International. 2004.
11. Welnic, W. and M. Wuttig, Reversible switching in phase-change materials. Materials Today, 2008. 11(6): p. 20-27.
12. Choi, B.J., et al., Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. Journal of Applied Physics, 2005. 98(3): p. 033715.
13. Waser, R., et al., Redox-Based Resistive Switching Memories - Nanoionic Mechanisms, Prospects, and Challenges. Advanced Materials, 2009. 21(25-26): p. 2632-2663.
14. Kim, K.M., D.S. Jeong, and C.S. Hwang, Nanofilamentary resistive switching in binary oxide system; a review on the present status and outlook. Nanotechnology, 2011. 22(25): p. 254002.
15. Janousch, M., et al., Role of Oxygen Vacancies in Cr-Doped SrTiO3 for Resistance-Change Memory. Advanced Materials, 2007. 19(17): p. 2232-2235.
16. Guo, X., et al., Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Applied Physics Letters, 2007. 91(13): p. 133513.
17. Kwon, D.H., et al., Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol, 2010. 5(2): p. 148-53.
18. Gao, B., et al. Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology. in VLSI Technology, 2009 Symposium on. 2009.
19. Zhang, H., et al., Ionic doping effect in ZrO2resistive switching memory. Applied Physics Letters, 2010. 96(12): p. 123502.
20. Zhang, H., et al., Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Applied Physics Letters, 2011. 98(4): p. 042105.
21. Guan, W., et al., Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. Applied Physics Letters, 2007. 91(6): p. 062111.
22. Chang, W.-Y., et al., Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals. Applied Physics Letters, 2009. 95(4): p. 042104.
23. Lee, J., et al., Effect of ZrOx/HfOx bilayer structure on switching uniformity and reliability in nonvolatile memory applications. Applied Physics Letters, 2010. 97(17): p. 172105.
24. Sadaf, S.M., et al., Highly uniform and reliable resistance switching properties in bilayer WOx/NbOx RRAM devices. physica status solidi (a), 2012. 209(6): p. 1179-1183.
25. Cheng, C.H., F.S. Yeh, and A. Chin, Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance. Adv Mater, 2011. 23(7): p. 902-5.
26. Kim, K.M., et al., Collective Motion of Conducting Filaments in Pt/n-Type TiO2/p-Type NiO/Pt Stacked Resistance Switching Memory. Advanced Functional Materials, 2011. 21(9): p. 1587-1592.
27. Baik, S.J. and K.S. Lim, Bipolar resistance switching driven by tunnel barrier modulation in TiOx/AlOx bilayered structure. Applied Physics Letters, 2010. 97(7): p. 072109.
28. Lin, K.-L., et al., Electrode dependence of filament formation in HfO2 resistive-switching memory. Journal of Applied Physics, 2011. 109(8): p. 084104.
29. Hao-Hsiang Chang, Complementary resistive switches based on ZnO memristive devices, National Tsing Hua University Department of Materials Science and Engineering
30. Robertson, J., High dielectric constant oxides. The European Physical Journal Applied Physics, 2004. 28(3): p. 265-291.
31. Zheng, W., et al., Electronic Structure Differences in ZrO2 vs HfO2. The Journal of Physical Chemistry A, 2005. 109(50): p. 11521-11525.
32. Ihsan Barin, Therrnochernical Data of Pure Substances , third Edition
.