研究生: |
吳晨歆 Wu, Chen-Hsin |
---|---|
論文名稱: |
在標準CMOS製程下實現單頻光之波長偵測器 Research on Single-Frequency Light Wavelength Detector in the Standard CMOS Technology |
指導教授: |
徐永珍
Hsu, Klaus Yung-Jane |
口試委員: |
黃智方
Huang, Chih-Fang 賴宇紳 Lai, Yu-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 50 |
中文關鍵詞: | 波長偵測器 、標準製程 |
外文關鍵詞: | wavelength detector, CMOS standard process |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今半導體科技產業蓬勃發展,生活中也隨處可見半導體相關的應用,以半導體為材料所設計的感光元件是相關市場上較熱門的選擇。
考量標準製程較為成熟不易失敗,並且能降低成本,因此想要藉由標準製程設計一種感光元件能識別不同波長的光偵測器,以期能在對色彩要求精準的市場上應用。本研究目的為實現一個結合光偵測器與前級訊號放大電路的opto-electronic IC (OEIC)。利用矽對於不同波長的光有不同吸收深度的特性,根據此原理設計分層架構,並將每層不同的光電流輸入轉阻放大器將訊號放大並讀取電壓值,記錄每個單頻光波長產生的電壓值後,從電壓值回推電流並換算成每個二極體的電流,先利用已知波長範圍為400nm至700nm的光,照射在元件上並記錄每一種波長的二極體電流分別為多少,以此建立背景資料庫,之後使用未知波長的光照射後即可藉由比對得知其波長數值。在量測系統部分以軟體方式與背景資料庫進行比對,期望能提供較為準確量測未知波長的方式。
The semiconductor industry is growing up these years. It is very easy to see semiconductor related application and products in our daily life. Photosensitive elements designed with semiconductor materials are the most popular topics in the relevant market.
Considering the low failure rate and low cost of CMOS standard process, we design a light wavelength detector which can detect different wavelength precisely. The purpose of this research is to realize an opto-electronic IC which combines photosensitive device and front-stage signal amplifier circuit design. According to the feature of silicon’s absorption depth, which depends on the light wavelength, we design the structure layer by layer. Each layer will generate different photo current after the detector being illuminated. Different photo current generated by different layer will be imported to each transimpedance amplifier separately. Trough transimpedance amplifier, signal will be amplified and transformed to voltage signal from current signal. After recording the voltage value of each light wavelength, we can calculate the photo diode current by formula. First, illuminate the detector by using the light of known wavelength whose range is from 400 nm to 700 nm. Second, build the database by recording the photo diode current of different light wavelength. Last, illuminate the detector by using the light of unknown wavelength and compare the photo diode current with the database to find the closest wavelength value. For measurement system, we use software to verify the database and find the wavelength value. We expect to offer a new method to measure the light of unknown wavelength.
[1] G. de Cesare, F. Irrera, F. Lemmi, and F. Palma, “Amorphous Si/SiC three-color detector with adjustable threshold” Applied Physics Letters, v 66, n 10, p 1178-80, 6 March 1995
[2] Erli Chen and Stephen Y. Chou, “A wavelength detector using monolithically integrated subwavelength metal-semiconductor-metal photodetectors” Proceedings of the SPIE - The International Society for Optical Engineering, v 3006, p 61-7, 1997
[3] J. Zimmer, D. Knipp, H. Stiebig and H. Wagner, "Amorphous silicon-based unipolar detector for color recognition," in IEEE Transactions on Electron Devices, vol. 46, no. 5, pp. 884-891, May 1999
[4] G. Batistell and J. Sturm, "Filter-less color sensor in standard CMOS technology," 2013 Proceedings of the European Solid-State Device Research Conference (ESSDERC), pp. 123-126, 2013
[5] A. Soares and R. Perry, "A two-color CMOS optical detector circuit," Proceedings 2007 IEEE SoutheastCon, pp. 562-565, 2007
[6] G. Langfelder, A.Longoni,F.Zaraga, “A novel colour-sensitive CMOS detector” Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 610 (1), pp. 50-53.
[7] V. Gradisnik and J. D. Puksec, "Color detection using a capacitance of np silicon photodiode," 2000 10th Mediterranean Electrotechnical Conference. Information Technology and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat. No.00CH37099), pp. 795-797, 2000
[8] A. Soares and R. Perry, "A two-color CMOS optical detector circuit," Proceedings 2007 IEEE SoutheastCon, pp. 562-565, 2007
[9] A. Longoni, F. Zaraga, G. Langfelder and L. Bombelli, "The Transverse Field Detector (TFD): A Novel Color-Sensitive CMOS Device," in IEEE Electron Device Letters, vol. 29, no. 12, pp. 1306-1308
[10] S. M. Sze, “Semiconductor Device Physics and Technology”, John Wiley & Sons Inc., 3rd ed
[11] Donald A. Neamen, “Semiconductor physics and devices : basic principles”, 4th ed
[12] Albert H. Titus, Maurice C-K. Cheung and Vamsy P. Chodavarapu, “CMOS photodetector” Web: https://www.intechopen.com/chapters/17220
[13] 林祐玄, “標準CMOS製程下實現高響應度橫向光感測電晶體之研究", 國立
清華大學, 電子工程研究所, 碩士論文 中華民國一百零六年十月
[14] Operational Amplifier Basics , Electronics tutorial
Web : https://www.electronics-tutorials.ws/opamp/opamp_1.html
[15] Agarwal G. (C.U. Shah University, Gujarat, India), Dwivedi V. ”Low-Power Two-Stage OP-AMP in 16 nm” Proceedings of ICTIS 2020. Smart Innovation, Systems and Technologies (SIST 195), p 637-642, 2021
[16] Gheorghe, A.G. , Marin, M.E. “Two Stage Op-Amp Design Verification and Optimization by Symbolic Computation” WSEAS Transactions on Circuits and Systems, v 17, 180-6, 2018
[17] C. Chanapromma and J. Mahattanakul, "Improved Design Procedure for Two-Stage CMOS Op Amp Employing Current Buffer," 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 2020
[18] D. Tripathy and P. Bhadra, "A High Speed Two Stage Operational Amplifier with High CMRR," 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) , pp. 255-259, 2018
[19] V. V. Yerokhin, K. V. Murasov, A. V. Kosykh and S. A. Zavyalov,
"Transimpedance operational amplifier for high-speed systems-on-a-chip," 2018 Moscow Workshop on Electronic and Networking Technologies (MWENT), pp. 1-4, 2018
[20] E. Bruun, "Feedback analysis of transimpedance operational amplifier circuits," in IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 40, no. 4, pp. 275-278, April 1993
[21] M. Gajare, D. K. Shedge and D. Itole, "CMOS Transimpedance Feedback Amplifier Design using Unity Gain Differential Amplifiers," 2021 International Conference on Emerging Smart Computing and Informatics (ESCI), pp. 743-747, 2021