研究生: |
邱政男 Chiu, Chen-nam |
---|---|
論文名稱: |
熱電元件材料Sn-Bi-Sb-Te與Sn-Bi-Te-Se系統之相平衡與界面反應 Phase equilibria and interfacial reactions of Sn-Bi-Sb-Te and Sn-Bi-Te-Se systems |
指導教授: |
陳信文
Chen, Sinn-wen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 205 |
中文關鍵詞: | 熱電材料 、無鉛銲料 、界面反應 、相平衡 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Sn-Bi共晶合金的熔點(139℃)相當低,普遍的應用在各種低溫的電子產品上,商用的熱電材料模組裡以Sn-Bi合金作為連接熱電材料與導電銅板佔有相當大的比例,而在各種的熱電材料中,又以Bi2-xSbxTe3與Bi2Te3-ySey具有最好的熱電性質,最常被用在中低溫的熱電材料中,因此在市售的熱電材料模組中常可見到Sn-Bi與Bi2-xSbxTe3或Bi2Te3-ySey相接著,這些模組在組裝或產品使用的過程中,Sn-Bi會與Bi2-xSbxTe3或Bi2Te3-ySey接觸與反應,而互相接著後的界面反應,對這些產品的可靠度便有很大的影響。本研究先簡化此四元的界面反應,先以二元或三元的界面反應來做探討。由於相平衡的基礎資料,對解釋界面反應與生成相有極大的幫助,因此本研究也建立了相關的三元系統相平衡。
本研究以實驗的方式來得到在1600C與5000C之Sn-Bi-Te相平衡,在此研究中發現了有5個三元相的存在,除了已知的外,另外也發現Sn3Bi2Te6、Sn2Bi2Te5及SnBiTe2相的存在。另外也使用新的Sn-Sb熱力學參數,來計算Sn-Sb-Te與Sn-Bi-Sb三元相平衡圖。
本研究以反應偶的方式進行界面反應的探討,使用的基材為熱電材料中主要的組成元素Te與構成n與p-type熱電材料最主要的Bi2Te3與Sb2Te3,討論了Sn-(Bi)/Te、Sn/Bi2Te3與Sn/Sb2Te3這些基礎系統的界面反應。在Sn/Te與Sn-Bi/Te之液/固界面反應中,皆可觀察到獨特的十字形cruciform pattern的產生,此特殊的生成相結構在文獻上是相當的罕見。在Sn/Te之液/固界面反應中也討論了,使用不同形狀的Te基材之界面反應,證實了在生成相中因為應力的關係,使得反應生成相出現裂縫,並解釋產生cruciform pattern之反應機制。在Sn-Bi/Te之液/固界面反應中,cruciform pattern則會隨著Bi在銲料中含量的增加而逐漸消失。在Sn/Te固/固界面反應中,則觀察到了雙結構的生成,藉由標記實驗來得知其原子擴散機制。在Sn/Bi2Te3之界面反應中,雖然起始為固/固界面反應,但因為生成Sn-Bi液相與SnTe+液相兩相共存的反應層,而使得其反應層的厚度隨著時間呈線性的增加,從Sn-Bi-Te的相平衡圖中,也可得知在反應偶中,液相之生成是可能存在的。在Sn/Sb2Te3之界面反應中,發現生成Sn3Sb2與SnTe+Sn3Sb2的兩相共存區,從計算得到的Sn-Sb-Te相平衡,其反應的擴散路徑也可清楚的瞭解。
本研究也討論了固態基材包覆液態之界面反應,此與一般界面反應的研究方式大不相同,藉由Sn/Te與Sn/Co兩個會生成cruciform pattern的反應系統,來研究Te與Co包覆液態Sn時,其角落之界面生成相生長形態,在結果中發現,在靠近角落的地方會有生成相向內凹的形態出現,並解釋其生成機制。
六、參考文獻
1. D. M. Rowe, CRC Handbook of Thermoelectrics, p443.
2. J. Lofy and L. E. Bell, International Conference on Thermoelectrics, Long Beach, pp. 471-476, (2002).
3. H. Y. Chang, S. W. Chen, David S. H. Wong and H. F. Hsu, Journal of Materials Research, Vol. 18(6), pp. 1420-1428, (2003).
4. T. Kacsich, E. Kolawa, J. P. Fleurial, T. Caillat and M. A. Nicolet, Journal of Physics D: Applied Physics, Vol. 31(19), pp. 2406-2411, (1998).
5. J. P. Fleurial, A. Borschchevsky, M. A. Ryan, W. Phillips, E. Kolawa, T. Kacisch and R. Ewell, International Conference on Thermoelectrics, pp. 614-645, (1997).
6. A. S. Gelb, S. L. Blalock and E. H. Volckmann, Proceedings of the International Conference on Thermoelectric Energy Conversion, pp. 125-129, (1986).
7. Y. C. Lan, D. Z. Wang, G. Chen and Z. F. Ren, Applied physics letters, Vol 92(10), pp. 101910-1-101910-3, (2008).
8. H. Wada, K. Takahashi and T. Nishizaka, Journal of Materials Science Letters, Vol. 9(7), pp. 810-812, (1990).
9. I. Nishida, Transactions of National Research Institute for Metals, Vol. 31(1), pp. 1-7, (1989).
10. J.-P. Fleurial, A. Borshchevsky, M.A. Ryan, W. Phillips, E. Kolawa, T. Kacisch and R. Ewell, International Conference on Thermoelectrics, pp. 641-645, (1997).
11. M. Yahatz, and J. Harper, US patent 5817188, (1998).
12. J.-I. Lee, S.-W. Chen, H.-Y. Chang and C.-M. Chen, Journal of Electronic Materials, Vol. 32(3), pp. 117-122, (2003).
13. C. Chen, C. E. Ho, A. H. Lin, G. L. Luo and C. R. Kao, Journal of Electronic Materials, Vol. 29(10), pp. 1200-1206, (2000).
14. C. M. Chen and S. W. Chen, Acta Materialia, Vol. 50(9), pp. 2461-2469, (2002).
15. F. J. J. van Loo, Progress in Solid State Chemistry, Vol. 20, pp. 47-99, (1990).
16. J. S. Kirkaldy and L. C. Brown, Canadian Metallurgical Quarterly, Vol. 2(1), p.89-115, (1963).
17. J. B. Clark, Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, Vol. 227(5), pp. 1250-1251, (1963).
18. A. A. Kodentsov, G. F. Bastin and F. J. J. van Loo, Journal of Alloys and Compounds, Vol. 320(2), pp. 207–217, (2001).
19. T. B. Massalski, H. Okamoto, P. R. Subramanian, L. Kacprzak, Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, in: T. B. Massalski et al. ASM International, Materials Park, OH, pp.794-796, (1990).
20. H. Ohtani and K. Ishida, Journal of Electronic Materials, Vol. 23, pp. 747-755, (1994).
21. B. J. Lee, C. S. Oh and J. H. Shim, Journal of Electronic Materials, Vol. 25(6), pp. 983-991, (1996).
22. B. Predel and W. Schwermann, Journal of the Institute of Metals, Vol. 99, pp. 169-173, (1971).
23. V. Vassiliev, M. Lelaurain and J. Hertz, Journal of Alloys and Compounds, Vol. 247, pp. 223-233, (1997).
24. P. J. T. L. Oberndorff, A. A. Kodentsov, V. Vuorinen, J. K. Kivilahti and F. J. J. van Loo, Berichte der Bunsen-Gesellschaft fur Physikalische Chemie, Vol. 102(9), pp. 1321-1325, (1998).
25. S.-W. Chen, C.-C. Chen, W. Gierlotka, A.-R. Zi, P.-Y. Chen and H.-J. Wu, Journal of Electronic Materials, Vol. 37(7), pp. 992-1002, (2008).
26. R. C. Sharma and Y. A. Chang, Bulletin of Alloy Phase Diagrams, Vol. 7(1), pp. 72-80, (1986).
27. D. Hanson and W. T. Pell-Walpole, Journal of the Institute of Metals, Vol. 63, pp. 109-122, (1938).
28. E. Jenckel and I. Roth, Zeitschrift für Metallkunde, Vol. 30, pp. 135-144, (1938).
29. R. C. Sharma and Y. A. Chang, Binary Alloy Phase Diagrams, 2nd edition, Vol. 3, in: T. B. Massalski et al. ASM International, Materials Park, OH, pp.3342-3343, (1990).
30. H. Okamoto, Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, in: T. B. Massalski et al. ASM International, Materials Park, OH, pp.787-789, (1990).
31. G. Ghosh, Journal of Phase Equilibria, Vol. 15(3), pp. 349-360, (1994).
32. H. Okamoto and L. E. Tanner, Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, in: T. B. Massalski et al. ASM International, Materials Park, OH, pp. 800-801, (1990).
33. H. Okamoto and L. E. Tanner, Binary Alloy Phase Diagrams, 2nd edition, Vol. 1, in: T. B. Massalski et al. ASM International, Materials Park, OH, pp. 790-792, (1990).
34. G. Ghosh, R. C. Sharma, D. T. Li and Y. A. Chang, Journal of Phase Equilibria, Vol. 15(2), pp. 213-224, (1994).
35. G. Ghosh, M. Loomans and M. E. Fine, Journal of Electronic Materials, Vol. 23(7), pp. 619-623, (1994).
36. H. Ohtani and K. Ishida, Journal of Electronic Materials, Vol. 23(8), pp. 747-755, (1994).
37. D. Manasijevic, J. Vrestal, D. Minic, A. Kroupa, D. Zivkovic and Z. Zivkovic, Journal of Alloys and Compounds, Vol. 438, pp. 150-157, (2007).
38. A. T. Dinsdale, Calphad-Computer coupling of Phase Diagrams and Thermochemistry, Vol. 15, pp. 317-425, (1991).
39. T. Hirai, Y. Takeda and K. Kurata, Journal of the Less-Common Metals, Vol. 13(3), pp. 352-356, (1967).
40. R. A. Reynolds, Journal of the Electrochemical Society, Vol. 114(5), pp. 526-529, (1967).
41. N. Kh. Abrikosov, E. I. Elagina and R. A. Tskhadaya, Inorganic Materials, Vol. 11(11), pp. 1788-1789, (1975).
42. K. Dovletov, N. K. Samokhotina, A. V. Anikin, A. Ashirov and K. Karaev, Izvestiya Akademii Nauk Turkmenskoi SSR, Seriya Fiziko-Tekhnicheskikh, Khimicheskikh i Geologicheskikh Nauk, Vol. 1, pp. 119-121, (1974).
43. A. Schlieper, F. Romermann and R. Blachnik, Zeitschrift fuer Metallkunde, Vol. 90(4), pp. 250-260, (1999).
44. K. Adouby, A. A. Toure, G. Kra, J. Olivier-Fourcade, J.-C. Jumas and C. P Vicente, Comptes Rendus de l'Academie des Sciences Series IIC Chemistry, Vol. 3(1), pp. 51-58, (2000).
45. A. A. Sher, I. N. Odin and A. V. Novoselova, Izv. Akad. Nauk SSSR, Neorg. Mater., Vol. 14(7), pp. 1270-1276, (1978).
46. E. I. Elagina and N. Kh. Abrikosov, Russian journal of inorganic chemistry, Vol. 4(7), pp. 738-740, (1959).
47. A. Stegherr, Philips Research Reports Supplements, Vol. 6, pp.1-72, (1969).
48. M. Majid and B. Legendre, Journal of Thermal Analysis and Calorimetry, Vol. 54(3), pp. 963-990, (1998).
49. A. Totani, H. Okazaki and S. Nakajima, Transactions of the Metallurgical Society of AIME, Vol. 242(4), pp. 709-712, (1968).
50. T. Caillat, M. Carle, D. Perrin, H. Scherrer and S. Scherrer, Journal of Physics and Chemistry of Solids, Vol. 53(2), pp. 227-232, (1992).
51. M. J. Smith, R. J. Knight and C. W. Spenser, Journal of Applied Physics, Vol. 33(7), pp. 2186-2190, (1962).
52. N. Kh. Abrikosov and L. V. Poretskaya, Inorganic Materials, Vol. 1(4), pp. 462-469, (1965).
53. J. Cholinski, M. Lasocka and H. Matyja, Revue de Physique Appliquee, Vol. 12(1), pp. 1-5, (1977).
54. V. Tomashik and P. Perrrot, in“Non-Ferrous Metal Systems Part 1:Selected Semiconductor Systems”ed. by G. Effenberg and S. Ilyenko, Springer Berlin Heidelberg (2006).
55. M. Carle, T. Caillat, C. Lahalle-Gravier, S. Scherrer and H. Scherrer, Journal of Physics and Chemistry of Solids, Vol. 56(2), pp. 195-199, (1995).
56. V. F. Bankina and N. Kh. Abrikosov, Zhurnal Neorganicheskoi Khimii, Vol. 9(4), pp. 931-936, (1964).
57. J. P. McHugh and W. A. Tiller, Transactions of the Metallurgical Society of AIME, Vol. 215, pp. 651-655, (1959).
58. M. Carle, D. Perrin, T. Caillat, S. Scherrer and H. Scherrer, in Proc. Tenth Int. Conf. on Thermoelectrics, IEEE, Cardiff, Wales, 1991, p.27.
59. I. Teramoto and S. Takayanagi, Journal of Physics and Chemistry of Solids, Vol. 19, pp. 124-129, (1961).
60. O. B. Sokolov, S. Ya. Skipidarov, N. I. Duvankova and G. G. Shabuninab, in Proc. Twenty-First Int. Conf. on Thermoelectrics, IEEE, pp. 1-4, 2002.
61. H. G. Bouanani, D. Eddike, B. Liautard and G. Brun, Materials Research Bulletin, Vol. 31(2), pp. 177-187, (1996).
62. S. N. Chizhevskaya, L. E. Shelimova, V. I. Kosyakov and V. A.Shestakov, Inorganic Materials, Vol. 33(8), pp. 757-764, (1997).
63. D. D. Allred and O. V. Nguyen, Proceedings of the International Conference on Thermoelectric Energy Conversion, Arlington, Texas, 1988. p.137.
64. P. B. Click and R. Marlow, Proceedings of the International Conference on Thermoelectric Energy Conversion, pp. 115-120, (1978).
65. K. A. Moores, Y. K. Joshi and G. Miller, International Conference on Thermoelectrics, pp. 31-34, (1999).
66. J. L. Cui, X. B. Zhao, W. M. Zhao and Y. P. Lu, Materials Science and Engineering B, Vol. 94(2-3), pp. 223-228, (2002).
67. C. N. Liao, C. H. Lee and W. J. Chen, Electrochemical and Solid-State Letters, Vol. 10(9), pp. 23-25, (2007).
68. J. J. van Laar, Zeitschrift fuer Physikalische Chemie, Stoechiometrie und Verwandtschaftslehre, Vol. 63, pp. 216-253, (1908).
69. J. J. van Laar, Zeitschrift fuer Physikalische Chemie, Stoechiometrie und Verwandtschaftslehre, Vol. 64, pp. 257-297, (1908).
70. J. L. Meijering, Philips Research Reports, Vol. 18, pp. 318-330, (1963).
71. L. Kaufman and H. Bernstein, “Computer Calculation of Phase Diagrams”, Academic, New York, (1970).
72. H. L. Lukas, J. Weiss and E. T. Henig, Calphad-Computer coupling of Phase Diagrams and Thermochemistry, Vol. 6(3), pp.229-251, (1982).
73. E. S. Watson and M. J. O'Neill, Joshua Justin and Nathaniel Brenner, Analytical Chemistry, Vol. 36(7), pp. 1233-1238, (1964)
74. K.-C. Hsieh, M. S. Wei and Y. A. Chang. Zeitschrift für Metallkunde, Vol. 74, pp. 330-337, (1983).
75. W. Gierlotka, unpublished work.
76. M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York, pp. 1175, (1958).
77. V. Vassiliev, Y. Feutelais, M. Sghaier and B. Legendre, Journal of Alloys and Compounds, Vol. 314, pp. 198-205, (2001).
78. E. Scheil, Zeitschrift für Metallkunde, Vol. 27(4), pp. 76-77, (1935).
79. F. J. J. Van Loo, Progress in Solid State Chemistry, Vol. 20(1), pp. 47-99, (1990).
80. J. Mackowiak and L.L. Shreir, J. Less-Common Met., Vol. 1, pp. 456-466, (1959).
81. F. Barbier and J. Blanc, J. Mater. Res., Vol. 14(3), pp. 737-744, (1999).
82. Q. Xu, H. Zhang, B. Ding and Z. Hu, J. Mater. Sci. Technol., Vol. 18(6), pp. 512-515, (2002).
83. 張婉君碩士論文,中央大學,(2004)。
84. C.-H. Wang and S.-W. Chen, Journal of Materials Research, Vol. 22(12), pp.3404-3409, (2007).
85. W. J. Zhu, J. Wang, H. S. Liu, Z. P. Jin and W. P. Gong, Materials Science and Engineering A, Vol. 456, pp. 109-113, (2007).