研究生: |
李俊賢 Lee, Chun-Hsien. |
---|---|
論文名稱: |
鈀修飾二氧化錫奈米材料的合成與氣體感測研究 Synthesis and Gas Sensing Application of Palladium Decorated Tin Oxide Nanostructures |
指導教授: |
楊家銘
Yang, Chia-Min |
口試委員: |
鄭桂忠
Tang, Kea-Tiong 饒達仁 Yao, Da-Jeng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 一氧化碳 、氣體感測 、鈀修飾二氧化錫 、奈米材料 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以微波輔助非水溶液合成法合成二氧化錫及貴金屬鈀修飾二氧化錫奈米材料,並應用於一氧化碳氣體感測。在合成過程中,我們探討合成溶劑與添加物對合成反應速率與晶面配位的影響,嘗試調控二氧化錫晶粒大小與形貌;此外,添加貴金屬鈀前驅物,微波合成貴金屬鈀修飾二氧化錫奈米材料。進一步以PXRD、SEM/TEM以及ICP-OES分析合成的奈米材料結構、晶粒大小與成分組成比例,以XPS、NMR分析奈米材料元素狀態與副產物組成,探討其合成機制。以苯甲醇作為溶劑與氧源能合成高產率與均勻晶粒大小的二氧化錫奈米材料。而以二次微波合成貴金屬鈀修飾二氧化錫奈米材料對於二氧化錫結構與晶粒大小無影響,隨著鈀含量的提高至2 wt%時會產生較大粒徑鈀。在一氧化碳氣體感測應用研究中我們發現在相同工作溫度下,鈀修飾二氧化錫之反應性明顯優於純二氧化錫奈米材料,且具有較低的工作溫度,以1 wt%鈀修飾二氧化錫具有最佳感測效果。在長時間壽命實驗中,發現鈀修飾二氧化錫奈米材料氣體感測反應性會受環境水氣影響,但在熱處理後能回復氣體感測反應性。
In the thesis, tin oxide and palladium decorated tin oxide nanocrystals were synthesized by microwave-assisted non-aqueous synthetic method and applied in carbon monoxide gas sensing. Different solvents and capping agents were used to control the morphology of the tin oxide nanostructures, and palladium decorated tin oxide nanostructures were prepared with addition of the palladium precursor in the microwave synthetic process. The obtained materials were characterized by PXRD, electron microscopy, ICP-OES, XPS and 13C-NMR for analysis of material structure and reaction mechanism. The analytical results indicated that tin oxide nanostructures were successfully synthesized in benzyl alcohol with high yield and uniform crystal sizes;however, capping agents might affect the synthesis of tin oxide and limit the growth of tin oxide nanostructures. For palladium decorated tin oxide nanostructures, the addition of palladium did not affect the size and morphology of tin oxide nanostructures. As the palladium ratio increased to 2 wt%, palladium with large particle size formed. Results of carbon monoxide gas sensing indicated that palladium decorated tin oxide nanostructures showed better response than tin oxide nanostructures at the same working temperature. In addition, palladium decorated tin oxide nanostructures also showed long-term stability at lower working temperature. For long-term stability test, sensing response of palladium decorated tin oxide decreaseed because of the influence of humidity. After heat treatment, the sensing response could be recovered.
[1] 行政院環境保護署室內空氣品質資訊網,室內空氣污染物的主要來源。https://iaq.epa.gov.tw/indoorair/page/News_6_3.aspx (accessed 5/29/2018)
[2] 中華民國勞動部, “勞工作業場所容許暴露標準”, 2018
[3] Occupational Safety and Health Administration, “Chemical Management and Permissible Exposure Limits (PELs)”
[4] 中華民國內政部建築研究所, “各國室內環境品質(含空氣品質)管理機制之比較研究”, 2006
[5] 陳榮泰、葉建南、張金生、許仲毅, 氣體感測元件之新興應用, 工業科技雜誌, 2015, p 347.
[6] Korotcenkov, G., Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications, volume 1: Conventional Approaches, 2014, p 84.
[7] 李孟軒, 摻雜金銀之二氧化錫薄膜對一氧化碳偵測性質之研究, 國立清華大學化學工程所碩士論文, 新竹市 , 2007
[8] Das, S.; Jayaraman, V., “SnO2: A comprehensive review on structures and gas sensors.” Prog. Mater. Sci. 2014, 66, 112-255.
[9] Korotcenkov G., Mater. Sci. Eng. B 2007,139 , 1–23.
[10] Dey, A., “Metal oxides for solid-state gas sensors: What determines our choice?” Mater. Sci. Eng. B-Adv. 2008, 229, 206-217.
[11] Marton, J.P., “Physical Properties of SnO2 Materials.” J. Electrochem. Soc. 1976, 123, 199-205.
[12] Franke, M. E.; Koplin, T. J.; Simon, U., “Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matters?” Small 2006, 2, 36-50.
[13] Shieh S. R., Kubo A., Duffy T. S., Prakapenka V. B., “High-pressure phases in SnO2 to 117 GPa” Shen G. Phys. Rev. B 2006, 73, 014105.
[14] Schleife, A.; Varley, J. B.; Fuchs, F.; Rödl, C.; Bechstedt, F.; Rinke, P.; Janotti, A.; Van de Walle, C. G., “Tin dioxide from first principles: Quasiparticle electronic states and optical properties.” Phys. Rev. B 2011, 83, 035116.
[15] Lee J. H., “Gas sensors using hierarchical and hollow oxide nanostructures: Overview.” Sensor. Actuat. B-Chem 2009, 140, 319–336.
[16] Yamazoe N., “New approaches for improving semiconductor gas sensors.” Sensor. Actuat. B 1991, 5, 7-19
[17] Xu C., Tamaki J., Miura N., Yamazoe N., “Grain size effects on gas sensitivity of porous SnO2-based elements.” Sensor. Actuat. B-Chem. 1991, 3, 147–155.
[18] Rothschild A.; Komem Y.,“ The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors.” J. Appl. Phys. 2004, 95, 6374-6380.
[19] Rout, C. S., “H2S sensors based on tungsten oxide nanostructures.” Sensor. Actuat. B. 2008, 128, 488-493.
[20] Kim, H. R.; Choi, K. I.; Lee, J. H.; Akbar, S. A., “Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical SnO2 spheres.” Sensor. Actuat. B-Chem. 2009, 136, 138-143.
[21] Mourdikoudis, S.; Liz-Marzan, L. M. “Oleylamine in nanoparticle synthesis.” Chem. Mater. 2013, 25, 1465 – 1476.
[22] Xu X.; Zhuang J.; Wang X., “SnO2 quantum dots and quantum wires: controllable synthesis, self-assembled 2D architectures, and gas-sensing properties” J. Am. Chem. Soc. 2008, 130, 12527–12535.
[23] Zhang, J.; Liu, X.; Wu, S.; Xu, M.; Guo, X.; Wang, S., “Au nanoparticle-decorated porous SnO2 hollow spheres: a new model for a chemical sensor.” J. Mater. Chem. 2010, 20, 6453–6459.
[24] Madler, L.; Sahm, T.; Gurlo, A.; Grunwaldt, J. D.; Bârsan, N.; Weimar, U.; Pratsinis, S. E., “Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles.” J. Nanopart. Res. 2006, 8, 783–796.
[25] Kolmakov, A.; Klenov, D. O.; Lilach, Y.; Stemmer, S.; Moskovits M., “Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles.” Nano Lett. 2005, 5, 667-673.
[26] http://clearmetalsinc.com/technology/
[27] Smith, D., Thin-Film Deposition: Principles and Practice. Mcgraw-Hill: 1995; p 616.
[28] Bradley, D. C., “Metal alkoxides as precursor for electronic and ceramic materials.” Chem. Rev. 1989, 89, 1317 - 1322.
[29] Niederberger, M., “Nonaqueous sol-gel routes to metal oxide nanoparticles.” Accounts Chem. Res. 2007, 40, 793 - 800.
[30] Niederberger, M.; Garnweitner, G., “Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles.” Chem. Eur. J. 2006, 12, 7282 - 7302.
[31] Bilecka, I.; Djerdj, I.; Niederberger, M., “One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles.” Chem. Commun. 2008, 886 - 888.
[32] Ba, J.; Polleux, J.; Antonietti, M.; Niederberger, M., “Non-aqueous synthesis of tin oxide nanocrystals and their assembly into ordered porous mesostructures.” Adv. Mater. 2005, 17, 2509 - 2512.
[33] Ba, J.; Rohlfing, D. F.; Feldhoff, A.; Brezesinski, T.; Djerdj, I.; Wark, M.; Niederberge, M., “Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration.” Chem. Mater. 2006, 18, 2848 - 2854.
[34] Niederberger, M., “Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals.” Int. J. Nanotechnol. 2007, 4, 263 - 281.
[35] Pinna, N.; Neri, G.; Antonietti, M.; Niederberger, M., “Nonaqueous synthesis of nanocrystalline semiconducting metal oxides for gas sensing.” Angew. Chem. Int. Ed. 2004, 43, 4345 - 4349.
[36] Polleux, J.; Antonietti, M.; Niederberger, M., “Ligand and solvent effects in the nonaqueous synthesis of highly ordered anisotropic tungsten oxide nanostructures.” J. Mater. Chem. 2006, 16, 3969 - 3975.
[37] Pinna, N., Niederberger, M., “Surfactant-free nonaqueous synthesis of metal oxide nanostructures.” Angew. Chem. Int. Ed. 2008, 47, 5292 - 5304.
[38] Hu, M. J., Xu, J. J., Gao, J. F., Yang, S. L., Wong J. S. P.; Li, R. K. Y., “Benzyl alcohol-based synthesis of oxide nanoparticles: the perspective of SN1 reaction mechanism.” Dalton Trans. 2013, 42, 9777 - 9784.
[39] Deshmukh, R.; Niederberger M., “Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents.” Chem. Eur. J. 2017, 23, 8542 - 8570.
[40] Stability of Allylic and Benzylic Cations.
http://www.kshitij-iitjee.com/Stability-of-Allylic-and-Benzylic-Cations
[41] Wang, J. G.; Cao, F. L.; Bian, Z. F.; Leung, M. K. H.; Li, H. X., “Ultrafine single-crystal TiOF2 nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis.” Nanoscale 2014, 6, 897 - 902.
[42] Pinna, N.; Grancharov, S.; Beato, P., Bonville, P., Antonietti, M., Niederberger, M., “Magnetite nanocrystals: Nonaqueous synthesis, characterization, and solubility.” Chem. Mater. 2005, 17, 3044 - 3049.
[43] Ludi, B.; Süess, M. J.; Werner, I. A.; Niederberger, M., “Mechanistic aspects of molecular formation and crystallization of zinc oxide nanoparticles in benzyl alcohol” Nanoscale 2012, 4, 1982 - 1995.
[44] Zhang, L. Z.; Garnweitner, G.; Djerdj, I.; Antonietti, M.; Niederberger, M., “Generalized nonaqueous sol-gel synthesis of different transition-metal niobate nanocrystals and analysis of the growth mechanism.” Chem. Asian J. 2008, 3, 746 - 752.
[45] Karmaoui, M.; David M.; Tobaldi, D. M.; Skapin, A. S.; Robert C. Pullar, R. C.; Seabra, M. P.; Labrincha, J. A.; Amaral, V. S., “Non-aqueous sol-gel synthesis through a low-temperature solvothermal process of anatase showing visible-light photocatalytic activity.” RSC Adv. 2014, 4, 46762 - 46770.
[46] Stolzenburg, P.; Freytag, A.; Bigall, N. C.; Garnweitner, G., “Fractal growth of ZrO2 nanoparticles induced by synthesis conditions.” CrystEngComm 2016, 18, 8396.-8405.
[47] Zimmermann, M.; Garnweitner, G., “Spontaneous water release inducing nucleation during the nonaqueous synthesis of TiO2 nanoparticles.” CrystEngComm 2012, 14, 8562 - 8568.
[48] Zhang, R.; Santangelo, S.; Fazio, E.; Neri, F.; D’Arienzo, M.; Morazzoni, F.; Zhang, Y. H.; Pinna, N.; Russo, P. A., “Stabilization of Titanium Dioxide Nanoparticles at the Surface of Carbon Nanomaterials Promoted by Microwave Heating.” Chem. Eur. J. 2015, 21, 14901 - 14910.
[49] Pinna, N.; Garnweitner, G.; Antonietti, M.; Niederberger, M., “Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process.” Adv. Mater. 2004, 16, 2196 - 2000.
[50] Bilecka, I.; Niederberger, M., “Microwave chemistry for inorganic nanomaterials synthesis.” Nanoscale 2010, 2, 1358 - 1374.
[51] Kappe, C. O., “Controlled microwave heating in modern organic synthesis.” Angew. Chem. Int. Ed. 2004, 43, 6250 - 6284.
[52] Mirzaei, A.; Neri, G., “Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review.” Sensor. Actuat. B-Chem. 2016, 237, 749 - 755.
[53] Schütz, M. B.; Xiao, L.S.; Lehnen, T.; Thomas Fischer, T.; Mathur, S., “Microwave-assisted synthesis of nanocrystalline binary and ternary metal oxides.” Int. Mater. Rev. 2018, 68, 341 - 374.
[54] Hu, X. L.; Gong, J. M.; Zhang, L. Z.; Yu, J. C., “Continuous size tuning of monodisperse ZnO colloidal nanocrystal clusters by a microwave-polyol process and their application for humidity sensing.” Adv. Mater. 2008, 20, 4845 - 4850.
[55] Hu, X. L.; Yu, J. C., “Continuous aspect-ratio tuning and fine shape control of monodisperse alpha-Fe2O3 nanocrystals by a programmed microwave-hydrothermal method.” Adv. Funct. Mater. 2008, 18, 880 - 887.
[56] Ding, K. L.; Miao, Z. J.; Liu, Z. M.; Zhang, Z. F.; Han, B. X.; An, G. M.; Miao, S. D.; Xie, Y., “Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process.” J. Am. Chem. Soc. 2007, 129, 6362 - 6363
[57] Hilaire, S.; Luo, L.; Rechberger, F.; Krumeich, F.; Niederberger, M., Z., “Microwave-assisted nonaqueous synthesis of doped ceria nanoparticles assembled into flakes.” Anorg. Allg. Chem. 2014, 640, 733–737.
[58] EasyPrep Plus Vessels-Pressure & Temperature Control Vessel Parts. http://cem.com/en/analytical-products/mars-6/replacement-parts/easyprep-plus-vessels/pressure-temperature-control-vessel-parts (accessed 5/29/2018)
[59] Catalyst characterization-XRD analysis. http://nptel.ac.in/courses/103103026/module2/lec12/1.html (accessed 5/29/2018)
[60] Transmission electron microscopy. https://en.wikipedia.org/wiki/Transmission_electron_microscopy (accessed 5/29/2018)
[61] History of Photoelectron Spectroscopy. https://kartyush.wordpress.com/2012/05/18/history-of-photoelectron-spectroscopy/ (accessed 5/29/2018)
[62] Donohue, M. D.; Aranovich, G. L., “Classification of Gibbs adsorption isotherms.” Adv. Colloid Interfac. 1998, 76-77, 137-152.
[63] Sing, K. S. W.; Everett D. H.; Haul, R. A. W.; Moscou, L.; Pierotti R. A.; Rouquerol, J.; Siemiemiewska, T., “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity” Pure App. Chem. 1985, 57, 603 - 619.
[64] Inductived Coupled Plasma Optical Emission Spectrometer.
http://analyticalprofessional.blogspot.tw/2013/06/inductive-coupled-plasma-optical.html (accessed 5/29/2018)
[65] Mutin, P. H.; Vioux, A., “Nonhydrolytic processing of oxide-based materials: simple routes to control homogeneity, morphology, and nanostructure” Chem. Mater. 2009, 21, 582-596.
[66] Jia, F. L.; Zhang, L. Z.; Shang, X. Y.; Yang, Y., “Non-aqueous sol - gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers.” Adv. Mater. 2008, 20, 1050 - 1054.
[67] Staniuk, M.; Hirsch, O.; Kränzlin, N.; Böhlen, R.; van Beek, W.; Abdala, P. M.; Koziej, D., “Puzzling mechanism behind a simple synthesis of cobalt and cobalt oxide nanoparticles: In situ synchrotron X-ray absorption and diffraction studies.” Chem. Mater. 2014, 26, 2086 - 2094.
[68] Kränzlin, N.; Ellenbroek, S.; Dura ́n-Martín, D.; Niederberger, M., “Liquid-phase deposition of freestanding copper foils and supported copper thin films and their structuring into conducting line patterns.” Angew. Chem. Int. Ed. 2012, 51, 4743 - 4746.
[69] Staniuk, M.; Zindel, D.; vanBeek, W.; Hirsch, O.; Kraenzlin, N.; Niederberger, M.; Koziej, D., “Matching the organic and inorganic counterparts during nucleation and growth of copper-based nanoparticles - in situ spectroscopic studies.” Crystengcomm 2015, 17, 6962 - 6971.
[70] Wu, Z. Y.; Zhu, Q. Q.; Shen, C.; Tan, T. W., “Monodispersed Pd nanoparticles supported on Mg − Al mixed metal oxides: a green and controllable synthesis.” ACS Omega 2016, 1, 498 - 506.
[71] Wang, Y., Wu, X. Y.; Li, Y. F.; Zhou, Z. L., “Mesostructured SnO2 as sensing material for gas sensors.” Solid State Electron. 2004, 48, 627-632.
[72] Liu, Y.; Koep, E.; Liu, M. L., “Highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition.” Chem. Mater. 2005, 17, 3997 – 4000.
[73] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN, 1992
[74] Kwoka, M.; Ottaviano, L.; Passacantando M.; Santucci, S.; Czempik, G.; Szuber, J., “XPS study of the surface chemistry of L-CVD SnO2 thin films after oxidation.” Thin Solid Films 2005, 490, 36 – 42.
[75] Karthik, T. V. K.; Olvera, M. d. l. L.; Maldonado, A.; Pozos, H. G., “CO gas sensing properties of pure and Cu-incorporated SnO2 nanoparticles: a study of Cu-induced modifications.” Sensors 2016, 16, 1283-1297.
[76] Sakai, G.; Baik, N. S.; Miura, N.; Yamazoe, N., “Gas sensing properties of tin oxide thin films fabricated from hydrothermally treated nanoparticles: Dependence of CO and H2 response on film thickness” Sens. Actuators, B 2001, 77, 116-121.
[77] Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K., “Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor.” ACS Appl. Mater. Interfaces 2015, 7, 5863 - 5869.
[78] Ma, N.; Suematsu, K.; Yuasa, M.; Kida, T.; Shimanoe, K., “Pd size effect on the gas sensing properties of Pd-loaded SnO2 in humid atmosphere.” ACS Appl. Mater. Interfaces 2015, 7, 15618 - 15625.
[79] Yamazoe, N.; Fuchigami, Jun.; Kishikawa M.; Seiyama T., “Interaction of tin oxide surface with O2, H2O, and H2.” Surf. Sci. 1979, 86, 335-344.
[80] Thornton, E. W.; Harrison, P. G., “Tin oxide surfaces. Part 1. Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide” J. Chem. Sot. Faraday Trans. 1975, 71, 461.
[81] Wicker, S.; Guiltat, M.; Weimar, U.; He ́meryck, A. Nicolae Barsan N., “Ambient humidity influence on CO detection with SnO2 gas sensing materials. a combined DRIFTS/DFT investigation.” J. Phys. Chem. C 2017, 121, 25064−25073.
[82] Hu M.J.; Gao, J.F.; Yang, S. L.; Dong, Y. C.; Wong, J. S. P.; Xu, J. J.; Shan, G. C.; Li, R. K. Y., “E1 reaction-induced synthesis of hydrophilic oxide nanoparticles in a non - hydrophilic solvent.” Nanoscale 2012, 4, 6284 - 6288.
[83] Peters, K.; Zeller, P.; Stefanic, G.; Skoromets, V.; Němec, H.; Kužel, P.; Fattakhova-Rohlfing D., “Water-dispersible small monodisperse electrically conducting antimony doped tin oxide nanoparticles.” Chem. Mater. 2015, 27, 1090 - 1099.
[84] Kim, H. J.; Lee J. H., “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview.” Sensor Actuat. B-Chem. 2014, 192, 607 - 627.
[85] Lu, Z.; Ma, D.; Yang, L.; Wang, X.; Xu, G.; Yang Z., “Direct CO oxidation by lattice oxygen on the SnO2(110) surface: a DFT study.” Phys. Chem. Chem. Phys. 2014, 16, 12488 - 12494.
[86] 蕭育仁、林育德、李彥希、薛丁仁, 環境室內空氣品質監測用電子鼻:微型氣體感測器.
[87] Hübert, T.; Boon-Brett, L.; Black, G.; Banach, G., “Hydrogen sensors – A review” Sensor Actuat. B-Chem. 2011, 157, 329 - 352.
[88] Arafat M. M.; Dinan B.; Akbar S. A.; Haseeb A. S. M. A., “Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review” Sensors 2012, 12, 7207-7258.
[89] Wetchakuna, K.; Samerjaia, T.; Tamaekonga, N.; Liewhirana, C.; Siriwonga, C.; Kruefua, V.; Wisitsoraatb, A.; Tuantranontb, A.; Phanichphant, S., “Semiconducting metal oxides as sensors for environmentally hazardous gases” Sensor Actuat. B-Chem. 2011, 160, 580 - 591.