研究生: |
潘柏亨 Pan, Bo-Heng |
---|---|
論文名稱: |
室溫濺鍍具垂直磁異向性TMn/CoPt薄膜交換偏壓之研究 (T = Ir及Fe) Exchange bias of perpendicular magnetic anisotropic TMn/CoPt thin films sputtered at room temperature (T = Ir and Fe) |
指導教授: |
戴明鳳
Tai, Ming-Fong |
口試委員: |
張晃暐
Chang, Huang-Wei 林昭吟 Lin, Jauyn-Grace |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 交換偏壓 、垂直磁異向性 、室溫濺鍍 |
外文關鍵詞: | Exchange bias, Perpendicular magnetic anisotropic, room temperature sputtering |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以具垂直磁異向性之無序六方晶CoPt薄膜作為鐵磁層,與IrMn及FeMn等反鐵磁層結合成交換偏壓系統,研究其磁性。室溫濺鍍之IrMn/CoPt系統及FeMn/CoPt系統皆具垂直之交換偏壓(HE),分別為273 Oe及408 Oe。並於濺鍍過程中施加垂直膜面1 kOe外加磁場,排列其系統之磁矩,有效提升系統之HE至348 Oe及455 Oe。此外,亦研究了CoPt厚度及AF厚度效應對AF/CoPt系統(AF=IrMn及FeMn)之磁性。本研究之IrMn/CoPt及FeMn/CoPt系統皆符合交換偏壓效應之理想化界面模型,HE與tFM呈反比。當AF之厚度過薄時,AF之反鐵磁層之自旋對鐵磁層之自旋的釘扎效應減弱,使HE下降。IrMn/CoPt及FeMn/CoPt系統所具最大之HE分別為717 Oe及800 Oe,而界面偶合能0.11 erg/cm2及0.26 erg/cm2。欲了解外加磁場之效應,亦探討了場退火效應對無磁場下製備及1 kOe外加磁場下製備之FeMn/CoPt系統之影響。無外加磁場下製備之FeMn/CoPt系統的HE由408 Oe提升至463 Oe,此與1 kOe外加磁場下製備FeMn/CoPt系統的455 Oe相近。此說明了濺鍍過程施加外加磁場與場退火有相同的效應。最後,以IrMn/CoPt系統為基礎,於室溫製備出垂直之自旋閥元件,獲得典型自旋閥之磁性行為,其釘扎層之交換偏壓(HE) 為570 Oe及矯頑磁力(Hcp)為102 Oe,自由層之矯頑磁力(Hcf¬)為514 Oe,其磁阻值為3.3%。
In this work, magnetic properties of perpendicular AF/CoPt system where disorder hexagonal CoPt with perpendicular magnetic anisotropy (PMA) is adopted as a ferromagnetic layer and IrMn and FeMn as AF layer s are studied. IrMn/CoPt and FeMn/CoPt systems prepared at room temperature by sputtering exhibit good PMA with larger exchange bias (HE) of 273 Oe and 408 Oe, respectively. Applying magnetic field of 1 kOe, induced by NdFeB magnet, perpendicular to substrate during films deposition could align spins of CoPt layer and therefore AF layer, increasing HE to 348 Oe for IrMn/CoPt and 455 Oe for FeMn/CoPt, respectively. The thickness dependences of CoPt and AF layers are also studied. The inverse proportional relationship between HE and tCoPt well agrees with ideal interface model of exchange bias system. When AF thicknesss is decreased, the decreased pinning effect between AF and CoPt due to lower anisotropy energy of AF reduces HE. The optimized HE of 787 Oe and 800 Oe with large exchange coupling energy of 0.11 erg/cm2 and 0.26 erg/cm2 are obtained for IrMn/CoPt and FeMn/CoPt systems, respectively. To explore effect of applying magnetic field of 1 kOe during flms deposition, field annealing is adopted. HE of FeMn/CoPt prepared without magnetic field is increased from 408 Oe to 463 Oe with increasing of annealing temperature during magnetic field of 1 kOe. It almost equals to FeMn/CoPt sputtered at the magnetic field of 1 kOe. Finally, IrMn/CoPt-based perpendicular spin valve prepared at room temperature exhibits HE of 570 Oe, coercivites of pinned-layer and free-layer of 102 and 514 Oe, and GMR ratio of 3.3%. The result of this study suggests AF/CoPt system has potential for applications in perpendicular spintroinic devices.
[1] 楊智信, "垂直記錄原理," 台灣資訊技術儲存協會會刊, 2005.
[2] V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, and J. Nogués, "Beating the superparamagnetic limit with exchange bias," Nature, vol. 423, pp. 850-853, 2003/06/01 2003.
[3] E. Grochowski and R. D. Halem, "Technological impact of magnetic hard disk drives on storage systems," IBM Systems Journal, vol. 42, pp. 338-346, 2003.
[4] P. Andreye, "垂直記錄技術使硬碟容量進入10倍成長時代," 電子工程專輯.
[5] H. J. Richter, "The transition from longitudinal to perpendicular recording," Journal of Physics D: Applied Physics, vol. 40, pp. R149-R177, 2007/04/19 2007.
[6] S. H. Charap, L. Pu-Ling, and H. Yanjun, "Thermal stability of recorded information at high densities," IEEE Transactions on Magnetics, vol. 33, pp. 978-983, 1997.
[7] D. Weller and A. Moser, "Thermal effect limits in ultrahigh-density magnetic recording," IEEE Transactions on Magnetics, vol. 35, pp. 4423-4439, 1999.
[8] E. N. Abarra, A. Inomata, H. Sato, I. Okamoto, and Y. Mizoshita, "Longitudinal magnetic recording media with thermal stabilization layers," Applied Physics Letters, vol. 77, pp. 2581-2583, 2000/10/16 2000.
[9] H. N. Bertram, H. Zhou, and R. Gustafson, "Signal to noise ratio scaling and density limit estimates in longitudinal magnetic recording," IEEE Transactions on Magnetics, vol. 34, pp. 1845-1847, 1998.
[10] D. A. Thompson and J. S. Best, "The future of magnetic data storage techology," IBM Journal of Research and Development, vol. 44, pp. 311-322, 2000.
[11] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, et al., "Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices," Physical Review Letters, vol. 61, pp. 2472-2475, 11/21/ 1988.
[12] M. Johnson and R. H. Silsbee, "Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals," Physical Review Letters, vol. 55, pp. 1790-1793, 10/21/ 1985.
[13] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange," Physical Review B, vol. 39, pp. 4828-4830, 03/01/ 1989.
[14] IBM, "The Application of Spintronic," 2001.
[15] 盧志權, "AMR磁感測器設計," 台灣磁性技術協會會勘, 2010.
[16] 陳柏源, "多層膜磁性奈米線之製備及其特性分析," 國立臺灣師範大學光電科技研究所碩士論文, 2007.
[17] W. Thomson, "XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron," Proceedings of the Royal Society of London, vol. 8, pp. 546-550, 1857/01/01 1857.
[18] A. P. Ramirez, "Colossal magnetoresistance," Journal of Physics: Condensed Matter, vol. 9, pp. 8171-8199, 1997/09/29 1997.
[19] M. Julliere, "Tunneling between ferromagnetic films," Physics Letters A, vol. 54, pp. 225-226, 1975/09/08/ 1975.
[20] T. Miyazaki and N. Tezuka, "Giant magnetic tunneling effect in Fe/Al2O3/Fe junction," Journal of Magnetism and Magnetic Materials, vol. 139, pp. L231-L234, 1995/01/02/ 1995.
[21] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, "Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions," Physical Review Letters, vol. 74, pp. 3273-3276, 04/17/ 1995.
[22] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, et al., "A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction," Nature Materials, vol. 9, p. 721, 07/11/online 2010.
[23] K. Inomata, "Tunnel Magnetoresistance (TMR)," NIMS.
[24] E. Gebhardt and W. K. Z., Metalkunde, vol. 32, p. 253, 1940.
[25] H. Sato, T. Shimatsu, Y. Okazaki, H. Muraoka, H. Aoi, S. Okamoto, et al., "Fabrication of L11 type Co-Pt ordered alloy films by sputter deposition," Journal of Applied Physics, vol. 103, p. 07E114, 2008/04/01 2008.
[26] M. Ohtake, D. Suzuki, and M. Futamoto, "Characterization of metastable crystal structure for Co-Pt alloy thin film by x-ray diffraction," Journal of Applied Physics, vol. 115, p. 17C116, 2014/05/07 2014.
[27] Y. S. Shur, L. M. Magat, G. V. Ivanova, A. I. Mitsek, A. S. Yermolenko, and O. A. Ivanov, "Nature of the coercive force of an ordered cobalt-platinum alloy," Fiz. Met. Metalloved, vol. 26, pp. 241-249, 1968.
[28] M. Ohtake, D. Suzuki, F. Kirino, and M. Futamoto, "Metastable Ordered Phase Formation in CoPt and Co3Pt Alloy Thin Films Epitaxially Grown on Single-Crystal Substrates," IEICE Transactions on Electronics, vol. E96.C, pp. 1460-1468, 2013.
[29] Y. Yamada, T. Suzuki, H. Kanazawa, and J. C. Österman, "The origin of the large perpendicular magnetic anisotropy in Co3Pt alloy thin films," Journal of Applied Physics, vol. 85, pp. 5094-5096, 1999/04/15 1999.
[30] A. E. Berkowitz and K. Takano, "Exchange anisotropy — a review," Journal of Magnetism and Magnetic Materials, vol. 200, pp. 552-570, 1999/10/01/ 1999.
[31] R. Hempstead, S. Krongelb, and D. Thompson, "Unidirectional anisotropy in nickel-iron films by exchange coupling with antiferromagnetic films," IEEE Transactions on Magnetics, vol. 14, pp. 521-523, 1978.
[32] L. Pál, E. Krén, G. Kádár, P. Szabó, and T. Tarnóczi, "Magnetic Structures and Phase Transformations in Mn‐Based CuAu‐I Type Alloys," Journal of Applied Physics, vol. 39, pp. 538-544, 1968/02/01 1968.
[33] P. Zilske, D. Graulich, M. Dunz, and M. Meinert, "Giant perpendicular exchange bias with antiferromagnetic MnN," Applied Physics Letters, vol. 110, p. 192402, 2017/05/08 2017.
[34] M. Meinert, B. Büker, D. Graulich, and M. Dunz, "Large exchange bias in polycrystalline MnN/CoFe bilayers at room temperature," Physical Review B, vol. 92, p. 144408, 10/08/ 2015.
[35] F. T. Yuan, H. W. Chang, P. Y. Lee, C. Y. Chang, C. C. Chi, and H. Ouyang, "Perpendicular magnetic anisotropy of non-epitaxial hexagonal Co50Pt50 thin films prepared at room temperature," Journal of Alloys and Compounds, vol. 628, pp. 263-266, 2015/04/15/ 2015.
[36] J. Sort, V. Baltz, F. Garcia, B. Rodmacq, and B. Dieny, "Tailoring perpendicular exchange bias in [Pt/Co]-IrMn multilayers," Physical Review B, vol. 71, p. 054411, 02/18/ 2005.
[37] C. Y. Tsai, J.-H. Hsu, P. Saravanan, and K. F. Lin, "Study on the occurrence of spontaneously established perpendicular exchange bias in Co49Pt51/IrMn bilayers," Journal of Applied Physics, vol. 115, p. 17D726, 2014/05/07 2014.
[38] C. Y. Tsai, J.-H. Hsu, and K. F. Lin, "Perpendicular exchange bias behaviors of CoPt/IrMn and CoPt/FeMn bilayers: A comparative study," Journal of Applied Physics, vol. 117, p. 17D153, 2015/05/07 2015.
[39] C. H. Lee, H. He, F. J. Lamelas, W. Vavra, C. Uher, and R. Clarke, "Magnetic anisotropy in epitaxial Co superlattices," Physical Review B, vol. 42, pp. 1066-1069, 07/01/ 1990.
[40] P. F. Carcia, "Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin‐film layered structures," Journal of Applied Physics, vol. 63, pp. 5066-5073, 1988/05/15 1988.
[41] J. S. Chen, B. C. Lim, J. F. Hu, Y. K. Lim, B. Liu, and G. M. Chow, "High coercivity L10 FePt films with perpendicular anisotropy deposited on glass substrate at reduced temperature," Applied Physics Letters, vol. 90, p. 042508, 2007/01/22 2007.
[42] M. Watanabe and M. Homma, "Perpendicular Magnetization of Epitaxial FePt(001) Thin Films with High Squareness and High Coercive Force," Japanese Journal of Applied Physics, vol. 35, pp. L1264-L1267, 1996/10/01 1996.
[43] J. U. Thiele, L. Folks, M. F. Toney, and D. K. Weller, "Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial FePt (001) L10 films," Journal of Applied Physics, vol. 84, pp. 5686-5692, 1998/11/15 1998.
[44] B. Wang, H. Oomiya, A. Arakawa, T. Hasegawa, and S. Ishio, "Perpendicular magnetic anisotropy and magnetization of L10 FePt/FeCo bilayer films," Journal of Applied Physics, vol. 115, p. 133908, 2014/04/07 2014.
[45] J. Ko, T. Bae, and J. Hong, "Effect of a change in thickness on the structural and perpendicular magnetic properties of L10 ordered FePd ultra-thin films with (001) texture," Journal of Applied Physics, vol. 112, p. 113919, 2012/12/01 2012.
[46] V. Gehanno, A. Marty, B. Gilles, and Y. Samson, "Magnetic domains in epitaxial ordered FePd(001) thin films with perpendicular magnetic anisotropy," Physical Review B, vol. 55, pp. 12552-12555, 05/01/ 1997.
[47] C. Clavero, J. M. García-Martín, J. L. Costa Krämer, G. Armelles, A. Cebollada, Y. Huttel, et al., "Temperature and thickness dependence at the onset of perpendicular magnetic anisotropy in $\mathrm{FePd}$ thin films sputtered on $\mathrm{MgO}(001)$," Physical Review B, vol. 73, p. 174405, 05/04/ 2006.
[48] M. Ohtake, S. Ouchi, F. Kirino, and M. Futamoto, "L10 ordered phase formation in FePt, FePd, CoPt, and CoPd alloy thin films epitaxially grown on MgO(001) single-crystal substrates," Journal of Applied Physics, vol. 111, p. 07A708, 2012/04/01 2012.
[49] H. An, K. Ando, Y. Nakamura, and J. Shi, "Formation and Perpendicular Magnetic Coupling of A1 and L10 CoPt in CoPt/TiN Films on Glass Substrate," IEEE Transactions on Magnetics, vol. 55, pp. 1-4, 2019.
[50] H. An, Q. Xie, J. Wang, T. Sannomiya, S. Muraishi, Z. Zhang, et al., "Highly (001) oriented L10-CoPt/TiN multilayer films on glass substrates with perpendicular magnetic anisotropy," Journal of Vacuum Science & Technology A, vol. 33, p. 021512, 2015/03/01 2015.
[51] W. H. Meiklejohn and C. P. Bean, "New Magnetic Anisotropy," Physical Review, vol. 102, pp. 1413-1414, 06/01/ 1956.
[52] 江旻宗, "鉭底層及旋轉濺鍍法對鐵錳/鎳鐵薄膜磁性之影響," 國立台北科技大學機電整合研究所碩士論文, 2015.
[53] B. D. Cullity and C. D. Graham, "Introduction to Magnetic Materials, 2nd Edition," Wiley-IEEE, 2008.
[54] C. Kittel and P. McEuen, "Introduction to Solid State Physics, 8th Edition," John Wiley & Sons Inc, 2004.
[55] 李景明、張慶瑞, "磁性技術手冊─第二章," 中華民國磁性技術協會, 2002.
[56] 陳士堃, "磁性技術手冊─第三章," 中華民國磁性技術協會, 2002.
[57] 莊柏青, "Ge(111)上之氧化鈷/鈷介面與磁性研究," 國立中正大學物理研究所 碩士論文, 2006.
[58] E. C. Stoner, "XCVII. The demagnetizing factors for ellipsoids," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 36, pp. 803-821, 1945/12/01 1945.
[59] W. H. Meiklejohn, "Exchange Anisotropy—A Review," Journal of Applied Physics, vol. 33, pp. 1328-1335, 1962/03/01 1962.
[60] W. H. Meiklejohn and C. P. Bean, "New Magnetic Anisotropy," Physical Review, vol. 105, pp. 904-913, 02/01/ 1957.
[61] 李自原, "MgO/NiO/Ni3Fe系統的界面缺陷隊交換偏壓的影響," 國立清華大學材料科學與工程學研究所碩士論文, 2013.
[62] D. Mauri, H. C. Siegmann, P. S. Bagus, and E. Kay, "Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate," Journal of Applied Physics, vol. 62, pp. 3047-3049, 1987/10/01 1987.
[63] A. P. Malozemoff, "Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces," Physical Review B, vol. 35, pp. 3679-3682, 03/01/ 1987.
[64] A. P. Malozemoff, "Mechanisms of exchange anisotropy (invited)," Journal of Applied Physics, vol. 63, pp. 3874-3879, 1988/04/15 1988.
[65] N. C. Koon, "Calculations of Exchange Bias in Thin Films with Ferromagnetic/Antiferromagnetic Interfaces," Physical Review Letters, vol. 78, pp. 4865-4868, 06/23/ 1997.
[66] T. C. Schulthess and W. H. Butler, "Consequences of Spin-Flop Coupling in Exchange Biased Films," Physical Review Letters, vol. 81, pp. 4516-4519, 11/16/ 1998.
[67] K. Takano, R. H. Kodama, A. E. Berkowitz, W. Cao, and G. Thomas, "Role of interfacial uncompensated antiferromagnetic spins in unidirectional anisotropy in Ni81Fe19/CoO bilayers (invited)," Journal of Applied Physics, vol. 83, pp. 6888-6892, 1998/06/01 1998.
[68] F. Radu and H. Zabel, "Exchange Bias Effect of Ferro-/Antiferromagnetic Heterostructures," in Magnetic Heterostructures: Advances and Perspectives in Spinstructures and Spintransport, H. Zabel and S. D. Bader, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 97-184.
[69] U. Nowak, K. D. Usadel, J. Keller, P. Miltényi, B. Beschoten, and G. Güntherodt, "Domain state model for exchange bias. I. Theory," Physical Review B, vol. 66, p. 014430, 07/17/ 2002.
[70] U. Nowak, A. Misra, and K. D. Usadel, "Domain state model for exchange bias," Journal of Applied Physics, vol. 89, pp. 7269-7271, 2001/06/01 2001.
[71] J.-V. Kim and R. L. Stamps, "Hysteresis from antiferromagnet domain-wall processes in exchange-biased systems: Magnetic defects and thermal effects," Physical Review B, vol. 71, p. 094405, 03/09/ 2005.
[72] F. Radu, A. Westphalen, K. Theis-Bröhl, and H. Zabel, "Quantitative description of the azimuthal dependence of the exchange bias effect," Journal of Physics: Condensed Matter, vol. 18, pp. L29-L36, 2005/12/21 2005.
[73] 莊達人, "VLSI製造技術," 高立圖書股份有限公司, pp. 146-160, 1995.
[74] 唐偉忠, "薄膜材料製備原理、技術及應用," 北京冶金工業出版社, 1998.
[75] 李柏毅, "室溫下以濺鍍法研製CoPt薄膜及其磁性之研究," 東海大學應用物理系碩士論文, 2014.[76] 吳自勤 and 王兵, "薄膜生長," 科學出版社, 2001.
[77] 陳建人, "真空技術與應用," 國家實驗研究院儀器科技研究中心, 2008.
[78] 麻蒔立男著 and 陳國榮等人譯, "薄膜製備技術基礎(原著第四版)," 化學工業出版, 2009.
[79] B. Z. Cui, M. Q. Huang, R. H. Yu, A. Kramp, J. Dent, D. D. Miles, et al., "Magnetic properties of (Nd,Pr,Dy)2Fe14B/α-Fe nanocomposite magnets crystallized in a magnetic field," Journal of Applied Physics, vol. 93, pp. 8128-8130, 2003/05/15 2003.
[80] 詹明哲, "Ta/Ni-Fe-Co/Ta薄膜結構、磁性及異向性磁組之研究," 國立台北科技大學機電整合研究所碩士論文, 2016.
[81] R. J.Hill, "Physical vapor deposition," Temescal publication, 1985.
[82] 陳炳翰, "以濺鍍法製備BiFeO3薄膜於玻璃基板及其結構與鐵電性之研究," 東海大學應用物理學系碩士論文, 2014.
[83] 林麗娟, "X光繞射原理及其應用," 工業材料86期, 1994.
[84] 陳光鏡, "鎳鐵/鐵錳雙層膜退火溫度隊交換耦合偏壓場之研究," 國立彰化師範大學物理研究所碩士論文, 2007.