簡易檢索 / 詳目顯示

研究生: 石承揚
Shih, Cheng-Yang
論文名稱: 有機薄膜元件組成之近紅外光距離感測裝置
Organic thin film devices based near-infrared proximity sensor
指導教授: 洪勝富
孟心飛
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 73
中文關鍵詞: 機器人感測皮膚近紅外光距離感測裝置有機薄膜元件
外文關鍵詞: the skin of robots, near-infrared proximity sensor, organic thin film devices
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近紅外光距離感測裝置是結合高分子發光二極體- Polymer Light Emitting Diode (PLED)與高分子光偵測元件-Polymer Photo Detector(PPD)。有機材料元件製程具有成本低廉、製程簡易、可製程於軟性基板且質量輕、以及可溶液製程大面積基板等優勢,符合智慧型機器人感測皮膚需求。若能在機器人表面披覆高密度的距離感測陣列(array),其將不會在變化的環境中受到障礙物的影響。操作於近紅外光波長具有低色散、高反射率的低損耗、人眼視感度低,且可降低環境雜訊之干擾等優點。
    近紅外光之產生是以高亮度綠光Green-B LED激發光轉換膜放光,再透過可見光濾光片濾除700nm之前的光所形成。光轉換膜材料為高放光效率螢光粉(phosphors),測試其轉換效率(conversion rate)可達到20%以上;另以P3HT:PCBM為主動層材料之PPD,藉由控制其主動層的厚度與元件施加逆向偏壓,使PPD操作在-20V時,可偵測到波長650nm ~ 900nm的紅光與近紅外光。PPD偵測到光之電流大小,藉由後端電路將電流轉換成電壓訊號且放大,經由資料擷取卡(Data Acquisition card),將PPD偵測物體之遠近訊號呈現至電腦。量測單一PPD pixel搭配四顆PLED提供偵測光源,在室內開日光燈的量測環境下,以白紙為物體在靠近偵測裝置10 cm時,PPD淨光電流(net photocurrent)變化達100nA以上,且電腦控制軟體可呈現出明顯的電壓訊號差異。依此為基礎,成功實現 array近紅外光距離感測裝置即時偵測物體位置的目標。


    Near-infrared (NIR) proximity sensor combines a polymer light emitting diode (PLED) and a polymer photo detector ( PPD). It is easy for organic materials to be applied in large-area and flexible substrate due to their mechanic property, and they have potential for low-cost fabrication process . As a result, organic materials must be properly used to the skin of robots. If the skin of robots can be covered with a high density array of proximity sensors, it will be able to move in unstructured and unpredictable environments without collisions. For proximity sensors, there are many advantages to operate in the NIR range, such as low dispersion , low loss, low eye-sensing and low environment interference.
    The NIR emission is obtained by adding a color conversion film of phosphors to a green-emitting Green-B LED, and then through the visible light filter to be formed. Measuring the conversion efficiency from photoluminescence is over 20% . On the other hand, PPD with voltage-adjustable photoresponse from visible to NIR range (650nm~900nm). Poly(3-hexylthiophene) and (6,6)-phenyl-C61- butyric acid methyl ester (PCBM) blend is used as the active layer. The PPD detection photocurrent will be transfer to voltage signal by means of current to voltage operation amplifier, and then be presented in the computer by Data Acquisition card. To decrease the current for driving PLED, we use four PLED and one PPD. When the PLED is biased at 7 V and the PPD is biased at -20V, PPD can detect the net photocurrent over 100nA for white paper under ambient indoor lighting and detection distance 10 cm. Finally, we can obviously identify the difference between object-far and object-close voltage signals, and then we come to array NIR proximity sensor that can detect the location of the object immediately.

    摘要..................................................................................................................................I Abstract .........................................................................................................................II 致謝...............................................................................................................................IV 目錄................................................................................................................................V 圖目錄..........................................................................................................................VII 表目錄...........................................................................................................................IX 第一章 序論..................................................................................................................1 1-1 前言...............................................................................................................1 1-2 有機光電元件發展歷史…...........................................................................2 1-3 研究動機與目的….......................................................................................3 1-4 有機材料組成之近紅外光距離感測裝置元件特性……...........................3 1-5 論文架構.......................................................................................................3 第二章 理論基礎..........................................................................................................4 2-1 共軛高分子材料介紹.................................................................................4 2-2 共軛高分子材料發光原理.........................................................................6 2-2.1 螢光與磷光理論..............................................................................6 2-2.2 能量轉移機制..................................................................................8 2-2.3 高分子發光二極體工作原理........................................................10 2-3 有機材料與金屬接面理論.......................................................................13 2-4 共軛高分子光偵測二極體工作原理.......................................................17 第三章 實驗方法與流程..........................................................................................20 3-1 有機發光二極體元件製程.......................................................................21 3-1.1 ITO基板圖樣化.............................................................................22 3-1.2 ITO基板清潔..............................................,..................................22 3-1.3 電洞注入層—PEDOT:PSS.........................................,...............23 3-1.4 電洞傳輸層與發光層....................................................................23 3-1.5 陰極蒸鍍與封裝............................................................................25 3-2 共軛高分子光偵測元件製程...................................................................27 3-3 光轉換膜與可見光濾光片製作...............................................................28 3-3.1 光轉換膜製程................................................................................28 3-3.2 可見光濾光片..............................................,.................................28 3-4 元件特性量測...........................................................................................29 3-4.1 有機發光二極體EL efficiency量測..............................................29 3-4.2 有機共軛高分子光偵測二極體量測............................................30 3-4.3 光轉換膜量-Photoluminescence efficiency.......................30 3-4.4 可見光濾波-CCD…......................................................................31 3-4.5 距離感測裝置之量測....................................................................31 3-5 材料介紹……...........................................................................................32 3-5.1 電洞注入材料................................................................................32 3-5.2 電洞傳輸材料................................................................................32 3-5.3 電子傳輸材料................................................................................33 3-5.4 發光材料…....................................................................................34 3-5.5 Polymer-PD主動層材料...............................................................35 3-5.6 光轉換膜材料................................................................................36 第四章 實驗結果與討論..........................................................................................37 4-1 光轉換膜特性...........................................................................................38 4-1.1 Laser dye光轉換膜特性................................................................38 4-1.2 螢光粉光轉換膜特性....................................................................41 4-2 有機發光二極體元件特性.......................................................................45 4-2.1 Super yellow LED..........................................................................45 4-2.2 Green-B LED.................................................................................46 4-2.3 Ir(mppy)3 LED.................................................................47 4-2.4 PLED光源選擇.............................................................................49 4-3 光偵測器元件特性...................................................................................50 4-4 距離感測裝置掃描方式與結果...............................................................52 4-4.1 大面積基板掃描式3×3陣列.........................................................52 4-4.2 鑲嵌元件組成掃描式3×3陣列....................................................55 4-4.3 鑲嵌元件組成區塊掃描式陣列....................................................57 4-4.4 近紅外光產生之光譜分佈............................................................59 4-5 電流轉電壓放大器與半波整流電路.......................................................61 4-5.1 電流轉電壓放大器........................................................................61 4-5.2 半波整流電路................................................................................62 4-6 One PPD pixel 距離感測裝置搭配後端電路呈現.................................64 4-6.1 One PPD and four PLED DC mode量測.......................................66 4-6.2 One PPD and four PLED AC mode量測......................................67 4-6.3 array near-infrared proximity sensor DC mode量測.............69 第五章 結論與未來展望..........................................................................................71 Reference.....................................................................................................................72

    [1] C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    [2] J. H. Burroughes, D.D.C. Bradley, A. R. Holmes, Nature. 347, 539 (1990).
    [3] C.W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 183(1986)
    [4] G. Yu, K. Pakbaz, and A. J. Heeger, “Semiconducting polymer diode: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity” Appl. Phys. Lett. 64, 3422(1994).
    [5] S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W. L. Kwan, G. Li, and Y. Yang, Adv. Mater. 22, 380 (2010).
    [6] C.-Y. Yu, C.-P. Chen, S.-H. Chan, G.-W. Hwang and C. Ting, Chem. Mater. 21 ,3262 (2009).
    [7] E. C. Chen, C. Y. Chang, J. T. Shieh, S. R. Tseng, H. F. Meng, C. S. Hsu and S. F. Horng, Appl. Phys. Lett. 96, 043507(2010).
    [8] E. C. Chen, S. R. Tseng, J. H. Ju, C. M. Yang, H. F. Meng, S. F. Horng and C. F. Shu, Appl. Phys. Lett. 93, 063304(2008).
    [9] http ://upload.wikimedia.org/wikipedia/commons/0/04/Trans_Cis_poliacetilene.
    [10] L. B. Smilowitz, “Conjugated polymers: modern electronic materials”, IEEE Circuits and Devices Magazine, Vol. 10, pp. 19-23, 1994.
    [11] 陳金鑫,黃孝文“OLED-夢幻顯示器” 。
    [12] http://www.shsu.edu/~chm_tgc/primers/pdf/JAB.pdf
    [13] R. Joseph, R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer
    Academic/Plenum Publishers, New York, 368 (1999).
    [14] A. A. Lamola, N. J. Turro, Energy Transfer and Organic Photochemistry, Wiley
    & Sons, New York, 17 (1969).
    [15] Donald A. Neamen “Semiconductor Physics & Devices, Third Edition”
    [16] M. A. Lambert and P. Mark,”Current Injection in Solids”,New York:
    Academic,(1970).
    [17] I. D. Parker, J. Appl. phys, 75, 1656, (1994).
    [18] 郭宗翰,“全溶液製程有機共軛高分子太陽能電池之漸進式結構設計與研 究”,國立清華大學光電工程研究所,民國98年。
    [19] Yan Yao, Hsiang-Yu Chen, Jinsong Huang, and Yang Yang, Appl. Phys. Lett.,
    90, 053509 (2007).
    [20] B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, Macromolecules, 42, 6741(2009)
    [21] 徐文興,“全高分子元件組成的紅光/近紅外光距離感測器”,國立清華大 學電子工程研究所,民國98年。
    [22] 劉宗祐,“以溶液製程製備小分子電子傳輸層達成多層結構之有機高分子 發光元件與樹枝狀磷光發光材料之研究”,國立交通大學電子物理研究所,民國98年。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE