簡易檢索 / 詳目顯示

研究生: 溫志遠
Chih-Yuan Wen
論文名稱: 不同鉍含量與摻雜釔對鐵酸鉍氧化物薄膜的影響
指導教授: 吳振名
Jenn-Ming Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 128
中文關鍵詞: 鐵酸鉍複鐵式鐵電性鐵電材料
外文關鍵詞: BiFeO3, BFO, multiferroic, ferroelectric
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    鉍酸鐵(BiFeO3)為目前熱門研究的複鐵式材料,但是很不幸地,BFO由於其在室溫下漏電流過大的問題,因此限制了其應用的價值,有許多文獻提供了很多BFO的製程方式,例如PLD、rf-magnetron sputtering、MOCVD和CSD等方式,本實驗採用CSD(chemical solution depoosition)的方式來旋鍍薄膜,實驗分為三個部份,第一部分為探討BFO薄膜的特性,由於鉍元素的熔點較低,在薄膜經過高溫熱處理的過程中,會因鉍揮發而造成損失,進而產生缺陷等問題,因此探討Bi/Fe=1.0、1.05和1.1三個成分,利用旋鍍法沉積於Pt/Ti/SiO2/Si(100)基板上,觀察氮氣氛下不同熱處理溫度的BFO薄膜的結構、電性質和磁性質方面的影響。而第二部份則是摻雜釔離子取代BFO中的鉍離子,在Bi1-XYXFeO3薄膜中分別取X=0.02、X=0.05和X=0.1三種不同摻雜量,觀察在氮氣氛下不同熱處理溫度的BYFO薄膜結構、電性質和磁性質方面的影響,還有與BFO薄膜相互比較相關的性質,藉以探討摻雜釔對BFO性質的影響。第三部份則是將BFO與BYFO性質較好的成分來探討氮氣氛下不同熱處理溫度與時間對薄膜性質的影響。
    透過CSD的方式旋鍍沉積BFO與BYFO薄膜,在氮氣氛下500℃熱處理10min為最佳的性質,其最大的2Pr值可以到達100μC/cm2,而2Ec值也高達850kV/cm,而摻雜釔的量越多,也使BYFO薄膜的漏電流增大,因此摻雜釔的電滯曲線較BFO來得差,其最大的2Pr值約為80μC/cm2,而2Ec值約為650kV/cm,而BFO與BYFO的磁性質皆相差不多,飽和磁化量都約為3emu/cm3,因此摻雜釔並沒有使BFO有較好的磁性質,因此降低BFO的過大漏電流則成為往後實驗上重要的方向。


    目 錄 摘 要 I 目 錄 III 表目錄 VII 圖目錄 VIII 第一章 前言 1 1.1 簡介 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 簡介複鐵式材料(multiferroic materials) 4 2.1.1 簡介鐵電性質(ferroelectric) 4 2.1.2 複鐵式性質(multiferroic properties) 8 2.2 鐵酸鉍的特性(BiFeO3) 12 2.2.1 晶體結構 12 2.2.2 BFO的優點 14 2.2.3 BFO的缺點 15 2.3 BFO薄膜的製作與發展 16 2.4 介電性質 20 2.4.1 極化機制(Polarization Mechanisms) 20 2.4.2 介電常數和散逸因子 21 2.4.3 介電崩潰機制 22 2.4.4 漏電流機制 22 2.5 化學溶液沈積法 (CSD) 24 第三章 實驗方法 35 3.1 實驗流程 35 3.1.1 基板的準備 35 3.1.2 BiFeO3(BFO)溶液的配置 35 3.1.3 薄膜的旋鍍與熱處理 37 3.1.4 薄膜的上電極鍍製 38 3.2 實驗的量測 39 3.2.1 晶相結構 39 3.2.2 薄膜厚度和表面結構 39 3.2.3 外加電場(E)對薄膜內部電流密度(J)的量測 40 3.2.4 電滯曲線 P-E的量測 40 3.2.5 介電常數及散逸因子的量測 40 3.2.6 磁滯取線 M-H的量測 41 3.2.7 薄膜表面形貌的量測 41 第四章 結果與討論 48 4.1 不同鉍含量的BiFeO3薄膜之性質 48 4.1.1 BFO薄膜的晶體結構 48 4.1.2 BFO薄膜的微觀結構 49 4.1.3 BFO薄膜的表面形貌 51 4.1.4 BFO薄膜的鐵電性質 51 4.1.5 BFO薄膜的漏電流 54 4.1.6 BFO薄膜的介電常數與散逸因子 55 4.1.7 BFO薄膜的磁性量測 56 4.2 不同釔摻雜量對BYFO薄膜的影響 57 4.2.1 BYFO薄膜的晶體結構 57 4.2.2 BYFO薄膜的微觀結構 58 4.2.3 BYFO薄膜的鐵電性質 60 4.2.4 BYFO薄膜的漏電流 61 4.2.5 BYFO薄膜的介電常數與散逸因子 62 4.2.6 BYFO薄膜的磁性量測 63 4.3 不同熱處理溫度與時間對BFO與BYFO薄膜的影響 64 4.3.1 BFO與BYFO薄膜的晶體結構 64 4.3.2 BFO與BYFO薄膜的微觀結構 65 4.3.3 BFO與BYFO薄膜的鐵電性質 66 4.3.4 BFO與BYFO薄膜的漏電流 67 4.3.5 BFO與BYFO薄膜的介電常數與散逸因子 68 第五章 結論 70 第六章 參考文獻 118 表目錄 表2-1: PZT、SBT和BLT三種鐵電材料比較表 28 表2-2: 常見複鐵式材料的特性表 28 表2-3: 絕緣體材料中的傳導機制 29 表3-1: 配置BFO溶液所需相關化學藥品 43 圖目錄 圖2-1: ABO3鈣鈦礦結構示意圖 30 圖2-2: 典型鐵電材料的電滯曲線 30 圖2-3: 鋯鈦酸鉛的相圖 31 圖2-4: BiFeO3六方晶原子排列示意圖 31 圖2-5: BiFeO3菱形晶與正方晶的原子排列示意圖 32 圖2-6: BFO中離子的排列位置與位移 32 圖2-7: 磁性材料中的原子排列結構示意圖 33 圖2-8: 四種極化機制 33 圖2-9: 四種極化機制對頻率的關係圖 34 圖2-10: The barrier-limited 機制,(a) 蕭特基發射 (b)穿遂效應 34 圖3-1: BFO溶液配置的流程示意圖 44 圖3-2: BYFO溶液配置的流程示意圖 44 圖3-3: 旋鍍製BFO及BYFO薄膜的流程示意圖 45 圖3-4: BFO薄膜的橫截面SEM圖 45 圖3-5: BFO薄膜黃光製程與白金上電極示意圖 46 圖3-6: BFO完整電容結構示意圖 46 圖3-7: 介電場數與散逸因子的量測示意圖 47 圖3-8: VSM儀器裝置量測示意圖 47 圖4-1: Bi1.0FeO3 在Pt/Ti/SiO2/Si上氮氣氛下不同溫度熱處理之X光繞射圖 73 圖4-2: Bi1.05FeO3 在Pt/Ti/SiO2/Si上氮氣氛下不同溫度熱處理之X光繞射圖 73 圖4-3: Bi1.1FeO3 在Pt/Ti/SiO2/Si上氮氣氛下不同溫度熱處理之X光繞射圖 74 圖4-4: Bi1.0FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理SEM圖 74 圖4-5: Bi1.0FeO3 在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理SEM圖 75 圖4-6: Bi1.0FeO3 在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理SEM圖 75 圖4-7: Bi1.0FeO3 在Pt/Ti/SiO2/Si上的SEM橫截面圖 76 圖4-8: Bi1.05FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理SEM圖 76 圖4-9: Bi1.05FeO3 在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理SEM圖 77 圖4-10: Bi1.05FeO3 在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理SEM圖 77 圖4-11: Bi1.05FeO3 在Pt/Ti/SiO2/Si上的SEM橫截面圖 78 圖4-12: Bi1.1FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理SEM圖 78 圖4-13: Bi1.1FeO3 在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理SEM圖 79 圖4-14: Bi1.1FeO3 在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理SEM圖 79 圖4-15: Bi1.1FeO3 在Pt/Ti/SiO2/Si上的SEM橫截面圖 80 圖4-16: B1.0FeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理AFM圖 80 圖4-17: B1.05FeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理AFM圖 81 圖4-18: B1.1FeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理AFM圖 81 圖4-19: Bi1.0FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的電滯曲線圖 82 圖4-20: Bi1.05FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的電滯曲線圖 82 圖4-21: Bi1.1FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的電滯曲線圖 83 圖4-22: BFO不同鉍含量在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的電滯曲線圖 83 圖4-23: BFO不同鉍含量在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的Pr-E和Ec-E圖 84 圖4-24: Bi1.OFeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的漏電流圖 84 圖4-25: Bi1.O5FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的漏電流圖 85 圖4-26: Bi1.1FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的漏電流圖 85 圖4-27: BFO不同鉍含量在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的漏電流圖 86 圖4-28: Bi1.0FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的介電常數與散逸因子對頻率圖 86 圖4-29: Bi1.05FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的介電常數與散逸因子對頻率圖 87 圖4-30: Bi1.1FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的介電常數與散逸因子對頻率圖 87 圖4-31: BFO不同鉍含量在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的介電常數與散逸因子對頻率圖 88 圖4-32: BFO不同鉍含量在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理的介電常數與散逸因子對頻率圖 88 圖4-33: BFO不同鉍含量在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理的介電常數與散逸因子對頻率圖 89 圖4-34: BFO不同鉍含量在Pt/Ti/SiO2/Si上500oC氮氣氛熱處理之磁滯曲線 89 圖4-35: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同溫度熱處理之X光繞射圖 90 圖4-36: Bi0.95Y0.05FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同溫度熱處理之X光繞射圖 90 圖4-37: Bi0.9Y0.1FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同溫度熱處理之X光繞射圖 91 圖4-38:Bi1-XYXFeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理之X光繞射圖 91 圖4-39: Bi1.05FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理SEM圖 92 圖4-40: Bi0.98Y0.02FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理SEM圖 92 圖4-41: Bi0.95Y0.05FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理SEM圖 93 圖4-42: Bi0.9Y0.1FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理SEM圖 93 圖4-43: Bi1.05FeO3 在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理SEM圖 94 圖4-44: Bi0.98Y0.02FeO3 在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理SEM圖 94 圖4-45: Bi0.95Y0.05FeO3 在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理SEM圖 95 圖4-46: Bi0.9Y0.1FeO3 在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理SEM圖 95 圖4-47: Bi1.05FeO3 在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理SEM圖 96 圖4-48: Bi0.98Y0.02FeO3 在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理SE圖 96 圖4-49: Bi0.95Y0.05FeO3 在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理SEM圖 97 圖4-50: Bi0.9Y0.1FeO3 在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理SEM圖 97 圖4-51: Bi0.98Y0.02FeO3 在Pt/Ti/SiO2/Si上的SEM橫截面圖 98 圖4-52: Bi0.95Y0.05FeO3 在Pt/Ti/SiO2/Si上的SEM橫截面圖 98 圖4-53: Bi0.9Y0.1FeO3 在Pt/Ti/SiO2/Si上的SEM橫截面圖 99 圖4-54: Bi0.98Y0.02FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的電滯曲線圖 99 圖4-55: Bi0.95Y0.05FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的電滯曲線圖 100 圖4-56: Bi0.9Y0.1FeO3 在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的電滯曲線圖 100 圖4-57: BYFO不同釔含量在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的電滯曲線圖 101 圖4-58: BYFO不同釔摻雜量在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的Pr-E與Ec-E圖 101 圖4-59: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的漏電流圖 102 圖4-60: Bi0.95Y0.05FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的漏電流圖 102 圖4-61: Bi0.9Y0.1FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的漏電流圖 103 圖4-62: BYFO不同釔摻雜量在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的漏電流圖 103 圖4-63: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的介電常數與散逸因子對頻率圖 104 圖4-64: Bi0.95Y0.05FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的介電常數與散逸因子對頻率圖 104 圖4-65: Bi0.9Y0.1FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度的介電常數與散逸因子對頻率圖 105 圖4-66: BYFO不同釔摻雜量在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理的介電常數與散逸因子對頻率圖 105 圖4-67: BYFO不同釔摻雜量在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理的介電常數與散逸因子對頻率圖 106 圖4-68: BYFO不同釔摻雜量在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理的介電常數與散逸因子對頻率圖 106 圖4-69: BYFO不同釔摻雜量在Pt/Ti/SiO2/Si上500oC氮氣氛熱處理的磁滯曲線圖 107 圖4-70: Bi1.05FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度與時間的X光繞射圖 107 圖4-71: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度與時間的X光繞射圖 108 圖4-72: Bi1.05FeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理1min的SEM圖 108 圖4-73: Bi1.05FeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理5min的SEM圖 109 圖4-74: Bi1.05FeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理10min的SEM圖 109 圖4-75: Bi1.05FeO3在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理5min的SEM圖 110 圖4-76: Bi1.05FeO3在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理10min的SEM圖 110 圖4-77: Bi1.05FeO3在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理10min的SEM圖 111 圖4-78: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理1min的SEM圖 111 圖4-79: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理5min的SEM圖 112 圖4-80: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上500℃氮氣氛熱處理10min的SEM圖 112 圖4-81: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理5min的SEM圖 113 圖4-82: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上550℃氮氣氛熱處理10min的SEM圖 113 圖4-83: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上600℃氮氣氛熱處理10min的SEM圖 114 圖4-84: Bi1.05FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度與時間的電滯曲線圖 114 圖4-85: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度與時間的電滯曲線圖 115 圖4-86: Bi1.05FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度與時間的漏電流圖 115 圖4-87: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度與時間的漏電流圖 116 圖4-88: Bi1.05FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度與時間的介電常數與散逸因子對頻率圖 116 圖4-89: Bi0.98Y0.02FeO3在Pt/Ti/SiO2/Si上氮氣氛下不同熱處理溫度與時間的介電常數與散逸因子對頻率圖 117

    [1] M. Lines and A. Glass, “Principles and Applications of Ferroelectrics
    and Related Devices”, Clarendon Press, Oxford, 87 (1977)
    [2] B. Ruette, MS thesis, Virginia tech (2003)
    [3] W. J. Merz, “The Electric and Optical Behavior of BaTiO3
    Single-Domain Crystals” Phys. Rev. 76, 1221 (1949)
    [4] S. Hoshino, Y. Mitsui, F. Jona, and R. Pepinsky, “Dielectric and Thermal Study of Tri-Glycine Sulfate and Tri-Glycine Fluoberyllate” Phys. Rev. 107, 1255 (1957)
    [5] B. Jaffe, W. R. Cooke Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press,New York, 1971)
    [6] E. G. Lee, Dirk J. Wouters, Geert Willems, and Herman E. Maes, “Influence of Zr/Ti ratios on the deformation in the hysteresis loop of Pb(Zr,Ti)O3 thin film capacitors” Appl. Phys. Lett. 70, 2404 (1997)
    [7] C. S. Liang, J. M. Wu, and M. C. Chang, “Ferroelectric
    BaPbO3/PbZr0.53Ti0.47/BaPbO3 heterostructures” Appl. Phys. Lett. 81, 3624 (2002)
    [8] S. G. Yoon, A. I. Kingon, and S. H. Kim, “Relaxation and leakage current characteristics of Pb1–xLax(ZryTi1–y)1–x/4O3 thin films with various Ir-based top electrodes” J. Appl. Phys. 88, 6690 (2000)
    [9] S. Y. Chen, C. L. Sun, “Ferroelectric characteristics of oriented Pb(Zr1–xTix)O3 films” J. Appl. Phys. 90, 2970 (2001)
    [10] K. Maki, B. T. Liu, H. Vu, V. Nagarajan, R. Ramesh, Y. Fujimori, T.
    Nakamura, and H. Takasu, “Controlling crystallization of Pb(Zr,Ti)O3 thin films on IrO2 electrodes at low temperature through interface engineering” Appl. Phys. Lett. 82, 1263 (2003)
    [11] Z. Huang, Q. Zhang, and R. W. Whatmore, “Low temperature crystallization of lead zirconate titanate thin films by a sol-gel method” J. Appl. Phys. 85 , 7355 (1999)
    [12] J. F. Scott, C. A. Araujo, B. M. Melnick, L. D. McMillan, R. Zuleeg, “Quantitative measurement of space-charge effects in lead zirconate-titanate memories” J. Appl. Phys. 70 , 382 (1991)
    [13] M. Dawber, J.F. Scott, “A model for fatigue in ferroelectric perovskite thin films” Appl. Phys. Lett. 76, 1060 (2000)
    [14] K. Takemura, T. Sakuma and Y. Miyasaka, “High dielectric constant (Ba,Sr)TiO3 thin films prepared on RuO2/sapphire” Appl. Phys. Lett. 64, 2967 (1994)
    [15] G. J. Norga, Laura Fe`, D. J. Wouters, and H. E. Maes, “Effect of RuO2 growth temperature on ferroelectric properties of RuO2/ Pb(Zr, Ti)O3/RuO2/Pt capacitors” Appl. Phys. Lett. 76, 1318 (2000)
    [16] T. Nakamura, Y. Nakao, A. Kamisawa and H. Takasu, “Electrical Properties of Pb(Zr,Ti)O 3 Thin Film Capacitors on Pt and Ir Electrodes “ Jpn. J. Appl. Phys. 34, 5184 (1995)
    [17] K. B. Lee, B. R. Rhee, and C. K. Lee, “Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barriers” Appl. Phys. Lett. 79, 821 (2001)
    [18] Y. C. Chen, Y. M. Sun, and J. Y. Gan, “Improved fatigue properties of lead zirconate titanate films made on oxygen-implanted platinum electrodes” Thin solid films 460, 25 (2004)
    [19] M. S. Chen, T.B. Wu, J.M. Wu, “Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films” Appl. Phys. Lett. 68, 1430 (1996)
    [20] G. S. Wang, X. J. Meng, J. L. Sun, Z. Q. Lai, J. Yu, S. L. Guo, J. G. Cheng, J.Tang, and J. H. Chu, “PbZr0.5Ti0.5O3/La0.5Sr0.5CoO3 heterostructures prepared by chemical solution routes on silicon with no fatigue polarization” Appl. Phys. Lett. 79, 3476 (2001)
    [21] R. Dat, D. J. Lichtenwalner, O. Auciello, and A. I. Kingon, “Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47O3/ La0.5Sr0.5CoO3 ferroelectric capacitors on platinized silicon with no polarization fatigue” Appl. Phys. Lett. 64,2673 (1994)
    [22] H. D. Bhatt, S. B. Desu, D. P. Vijay, Y. S. Hwang, X. Zhang, and M. Nagata,and A.Grill, “Novel high temperature multilayer electrode-barrier structure for high-density ferroelectric memories” Appl. Phys. Lett. 71, 719 (1997)
    [23] Nicola A. Hill, “Why are there so few magnetic ferroelectrics” J. Phys. Chem. B 104, 6694 (2000)
    [24] Nicola A. Hill, Alessio Filippetti, “Why are there any magnetic ferroelectrics?” J. Magnetism and Magnetic Materials. 242-245, 976-979 (2002)
    [25] G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, “ Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides” Phys. Rev. B 65, 134402 (2002)
    [26] J. Van Suchtelen, Philips Res. Rep. 27, 28 (1972)
    [27] Manfred Fiebig, “Revival of the magnetoelectric effect” J. Phys. D: Appl. Phys. 38, R123 (2005)
    [28] V. J. Folen, G. T. Rado, and E. W. Stalder, “Anisotropy of the magnetoelectric effect in Cr2O3” Phys.Rev. Lett. 6, 607 (1961)
    [29] G. T. Rado, V. J. Folen, “Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains” Phys.Rev. Lett. 7, 310 (1961)
    [30] I. Kornev, M. Bichurin, J. P. Rivera, S. Gentil, A. G. M. Jansen, H. Schmid, and P. Wyder, “Magnetoelectric properties of LiCoPO4 and LiNiPO4” Phys. Rev. B 62, 12247 (2000)
    [31] Venevtsev Y N, Gagulin V V and Zhitomirsky I D Ferroelectrics 73 221 (1987)
    [32] E. Ascher, H. Schmid and D. Tar, “Dielectric properties of boracites and evidence for ferroelectricity” Solid State Commun. 2 45 (1964)
    [33] H. Schmid, H. Rieder and E. Ascher, “Magnetic susceptibilities of some 3d transition metal boracites” Solid State Commun. 3 327 (1965)
    [34] J. Van den Boomgaard, D. R. Terrell, and R. A. J. Born, “An in situ grown eutectic magnetoelectric composite material” J. Mater. Sci. 9, 1705 (1974)
    [35] J. Van den Boomgaard, A. M. J. G. van Run, and J. van Suchtelen, Ferroelectrics 14, 727 (1976)
    [36] J. Van den Boomgaard and R. A. J. Born, “A sintered magnetoelectric composite material BaTiO3-Ni(Co, Mn) Fe2O4” J. Mater. Sci. 13, 1538 (1978)
    [37] G.Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, “Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides” Phys. Rev. B 65, 134402 (2002)
    [38] G. Liu, C. W. Nan, N. Cai, and Yuanhua Lin, “Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and lead–zirconate–titanate” J. Appl. Phys, 95, 2660 (2004)
    [39] J. Ryu, S. Priya, A. V. Carazo, and K. Uchino, “Effect of the Magnetostrictive Layer on Magnetoelectric Properties in Lead Zirconate Titanate/Terfenol-D Laminate Composites” J. Am. Ceram. Soc. 84, 2905 (2001)
    [40] J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, “Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites” Jpn. J. Appl. Phys., Part 1 40, 4948 (2001)
    [41] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr, Ti)O3 under resonant drive” Appl. Phys. Lett. 83, 4812 (2003)
    [42] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “A strong magnetoelectric voltage gain effect in magnetostrictive-piezoelectric composite” Appl. Phys. Lett. 85, 3534 (2004)
    [43] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “Circumferentially magnetized and circumferentially polarized magnetostrictive/piezoelectric laminated rings” J. Appl. Phys. 96, 3382 (2004)
    [44] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “Voltage gain effect in a ring-type magnetoelectric laminate” Appl. Phys. Lett. 84, 4188 (2004)
    [45] S. Dong, J. Cheng, J. F. Li, and D. Viehland, “Characterization of magnetoelectric laminate composites operated in longitudinal-transverse and transverse-transverse modes” J. Appl. Phys. 95, 2625 (2004)
    [46] C. W. Nan, “Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases” Phys. Rev. B 50, 6082 (1994)
    [47] Y. N. Venevtsev, V. V. Gagulin and E. D.Zhitomirsky, “Material science aspects of seignett-magnetism problem” Ferroelectrics 73 221 (1987)
    [48] G. A. Smolenskii, V. A. Bokov, V. A. Isupov, N. N. Krainik and G. H. Nedlin, Helv. Phys. Acta 41 1187 (1968)
    [49] Y. N. Venevtsev and V.V. Gagulin, Ferroelectrics 162 23 (1994)
    [50] S. M. Skinner, IEEE Trans. Parts, Mater. Packaging 6 68 (1970)
    [51] H. Schmid Int., J. Magn. 4 337 (1973)
    [52] K. Aizu, “Possible Species of Ferromagnetic, Ferroelectric, and
    Ferroelastic Crystals” Phys. Rev. B 2 754 (1970)
    [53] H. Schmid, Ferroelectrics 162 317 (1994)
    [54] G. A. Smolenskii and I. E. Chupis, “Segnetomegnetics” Sov. Phys. Usp. 25 475 (1982)
    [55]Van E. Wood and A. E. Austin, Int. J. Magnetism 5, 303(1974) and references therein
    [56] F. Kubel and H. Schmid, “Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3” Acta Crystallogr, Sect. B 46, 698 (1990)
    [57] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D.Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures” Science 299, 1719 (2003)
    [58] S. V. Kiselev, R. P. Ozerov, and G. S. Zhadanov, Sov. Phys. 7, 742 (1963)
    [59] N. N. Krainik et al., Sov. Phys. 8, 654 (1966)
    [60] I. G. Ismailzade, Soviet Sov. Phys. 11, 747 (1967)
    [61] K. Ueda, H. Tabata, and T. Kawai, “coexist of ferroelectricity and ferromagnetism in BiFeO3-BaTiO3 thin films at room temperature” Appl. Phys. Lett. 75, 555 (1999)
    [62] Y. E. Roginskaya, Y. N.Venevtsev, and G. S. Zhdanov, Sov. Phys. JETP 21, 817 (1965)
    [63] G. A. Smolenskii and I. E. Chupis, Sov. Phys. Usp. 25, 475 (1982)
    [64] J. R. Teague, R. Gerson, and W. J. James, “Dielectric hystersis in single crystal BiFeO3” Solid State Commun. 8, 1073 (1970)
    [65] J. Wang, H. Zheng, Z. Ma, S. Prasertchoung, M. Wuttig, R. Droopad, J. Yu, K. Eisenbeiser, and R. Ramesh, “Epitaxial BiFeO3 thin films on Si” Appl. Phys. Lett. 85, 2574 (2004)
    [66] Jiefang Li, J. Wang, M. Wuttig, R. Ramesh, Naigang Wang, B. Ruette, A. P. Pyatakov, A. K. Zvezdin and D. Viehland, “Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitaxial-induced transitions” Appl. Phys. Lett. 84, 5261 (2004)
    [67] V. R. Palkar, J. John, and. R. Pinto, “ Observation of saturated polarization and dielectric anomaly in magnetoelectric BiFeO3 thin films” Appl. Phys. Lett. 80, 1628 (2002)
    [68] Kwi Youg Yun, Dan Richinschi, Takeshi Kanashima, Minoru Noda and Masanori Okuyama, “Giant ferroelectric polarization beyond 150μC/cm2 in BiFeO3 thin film” Jpn. J. of Appl. Phys., Vol. 43, No. 5A, pp. L647-L648 (2004)
    [69] Yi-Hsien Lee, Chun-Sheng Liang, and Jenn-Ming Wu, “Crystal growth and characterizations of highly oriented BiFeO3 thin films” Electrochem. Solid-state Lett., 8 (11) F55-F57 (2005)
    [70] Yi-Hsien Lee, Chia-Ching Lee, Zeng-Xun Liu, Chun-Cheng Liang, and Jenn-Ming Wu, “Epitaxial growth of the La-substituted BiFeO3 thin films” Electrochem. Solid-state Lett., 9 (5) F38-F40 (2006)
    [71] Yi-Hsien Lee, Jenn-Ming Wu and Chih-Huang Lai, “Influence of La doping in multiferroic properties of BiFeO3 thin films”Appl. Phys. Lett. 88, 042903 (2006)
    [72] Yao Wang, Qing-hui Jiang, Hong-cai He, and Ce-Wen Nan, “Multiferroic BiFeO3 thin films prepared via a simple sol-gel method” Appl. Phys. Lett. 88.142503 (2006)
    [73] S. lakavlev, C.-H. Solterbeck, M. Kuhnke, and M. Es-Souni, “Multiferroic BiFeO3 thin films processed via chemical solution deposition: structural and electrical characterization” J. Appl. Phys. 97, 094901 (2005)
    [74] Sushil K. Singh and Hiroshi Ishiwara, “Reduced leakage current in BiFeO3 thin films on Si substrates formed by a chemical solution method” Jpn. J. Appl. Phys., Vol. 44, No. 23, pp. L734-L736 (2005)
    [75] Sushi K. Singh, Risako Ueno, Hiroshi Funakubo, Hiroshi Uchida, Seiichiro Koda and Hiroshi Ishiwara, “Dependence of ferroelectric properties on thickness of BiFeO3 thin films fabricated by chemical solution deposition” Jpn. J. Appl. Phys., Vol. 44, No. 12, pp. 8525-8527 (2005)
    [76] Chin-Feng Chung and Jenn-Ming Wu, “Low leakage BiFeO3 thin films fabricated by chemical solution deposition” Electrochem. Solid-state Lett., 8 (12) F63-F66 (2005)
    [77] S. Y. Yang, F. Zavaliche, L. Mohaddes-Ardabili, V. Vaithyanathan, D. G. Scholm, Y. J. Lee, Y. H. Chu, M. P. Cruz, Q. Zhan, T. Zhao, and R. Ramesh, “Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications” Appl. Phys. Lett. 87, 102903 (2005)
    [78] Risako Ueno, Shingo Okaura, Hiroshi Funakubo and Keisuke Saito, “Crystal structure and electrical properties of epitaxial BiFeO3 thin films grown by metal organic chemical vapor deposition” Jpn. J. Appl. Phys., Vol. 44, No. 39, pp. L231-L233 (2005)
    [79] Yi-Hsien Lee, Yi- Chan Chen, Yi-Hsien Lu, Heh-Nan Liu and Jenn-Ming Wu, “Surface chemistry and nanoscale characterizations fo multiferroic BiFeO3 thin films” Electrochem. Solid-state Lett., 8 (10) F43-F46 (2005)
    [80] Yi-Hsien Lee, Jenn-Ming Wu , Yu-Lun Chueh, and Li-Jen Chou, “Low-temperature growth and interface characterization of BiFeO3 thin films with reduced leakage current” Appl. Phys. Lett. 87, 172901 (2005)
    [81] Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu and Z. G.
    Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering” Appl. Phys. Lett. 84 , 1731 (2004)
    [82] M. Mahesh Kumar, Srinivas, and S. V. Suryanarayana, “Structure property relations in BiFeO3/BaTiO3 solid solutions” J. Appl. Phys. 87, No. 2, 15 Jan. (2000)
    [83] Jinrong Cheng, Zhongyan Meng and L. Eric Cross, “High-field and high-Tc piezoelectric ceramics based on Bi(Ga, Fe) O3-PbTiO3 crystalline solutions” J. Appl. Phys. 98, 048102 (2005)
    [84] Toshimtsu Kanai, Shin-ichi Ohkoshi, Kazuhito Hashimoto, “Magnetic, electric, and optical functionalities of (PLZT)x(BiFeO3)1-x ferroelectric-ferromagnetic thin films” J. Phys. and Chem. Solids 64, 391-397 (2003)
    [85] B. Ruette, S. Zvyagin, A. P. Pyatakov, A. Bush, J. F. Li, V. I. Belotelov, A.K. Zvezdin, and D. Viehland, “Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order” Phys. Rev. B 69, 064114 (2004)
    [86] Hiroshi Uchida, Risako Ueno, Hiroshi Nakaki, Hirochsi Funakubo and Seiichiro Koda, “Ion modification for improvement of instulating and ferroelectric properties of BiFeO3 thin films fabricated by chemical solution deposition” Jpn. J. Appl. Lett. Vol. 44, No. 18, pp. L561-L563 (2005)
    [87] S. R. Das, P. Bhattacharya, R. N. P. Choudhary, and R. S. Katiyar, “Effect of La substitution on structural and electrical properties of BiFeO3 thin film” J. Appl. Phys. 99, 066107 (2006)
    [88] Jong Kuk Kim, Sang Su Kim, Won-Jeong Kim, Amar S. Bhalla and Ruyan Guo, “ Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition” Appl. Phys. Lett. 88, 132901 (2006)
    [89] Youn-Ki Jun, Won-Taek Moon, Chae-Myung Chang, Hyun-Su Kim, Hyun Sam Ryu, Jae Wook Kim, Kee Hoon Kim, and Seong-Hyeon Hong, “Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO3 ceramics”Solid state comm. 135, 133-137 (2005)
    [90] Dongeun Lee, Min G. Kim, SangWoo Ryu, Hyun M. Jang and Sang G. Lee, “Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films”Appl. Phys. Lett. 86, 222903 (2005)
    [91] K. Y. Yun, Minoru Noda and Masanori Okuyama, “Effects of annealing atmosphere on crystallization and electrical properties in BiFeO3 thin films by chemical solution deposition (CSD)” Journal of the Korean Physical Society, Vol. 42, pp. S1153~S1156 (2003)
    [92] Xiaoding Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire, and Judith L. MacManus-Driscoll, “Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3” Appl. Phys. Lett. 86, 062903 (2005)
    [93] Jong Kuk Kim, Sang Su Kim, Won-Jeong Kim, Amar S. Bhalla and Ruyan Guo, “ Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition” Appl. Phys. Lett. 88,132901 (2006)
    [94] A.J. Moulson and J. M. Herbert, “Electroceramics, materials, properties and applications”, p52-55 and p61-62. (1990)
    [95] 李雅明, “固態電子學”, 全華科技 (1995)
    [96] 吳朗, “電子陶瓷-介電”, 全新資訊圖書 (1994)
    [97] 施修正, “利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜的研究” , 清華大學, 博士論文, (1999)
    [98] Y. S. Yang, S. J. Lee, S. H. Kim, B. G. Chae, and M. S. Jang, “Schottky BarrierEffects in The Electronic Conduction of Sol-Gel derived Lead Zirconate Titanate Thin Film Capacitors”, Journal of Applied Physics, Vol. 84 No. 9 p5005-5011 (1998)
    [99] I. Stolichnov, and A. Tagantsev, “Space-Charge Influenced-Injection Model for Conduction on Pb(Zr xTi1-x)O3 Thin Films”, Journal of Applied Physics, Vol. 84 No. 6 p3216-3225 (1998)
    [100] W. L. Warren, D. Dimos, and R. M. Waser, “Degradation Mechanisms in Ferroelectric and High-Permittivity Perovskites”, MRS Bulletin, July p40-45 (1996)
    [101] Robert W. Schwartz, “Chemical Solution Deposition of Perovskite Thin Films” Chem. Mater. 9, 2325-2340 (1997)
    [102] J. Fukushima, K. Kodaira, T. Matsushita, “Preparation of
    ferroelectric PZT films by thermal decomposition of organometallic compounds” J. Mater. Sci. 19, 595 (1984)
    [103] K. D. Budd, S. K. Dey, D. A. Payne, Brit. Ceram. Soc. Proc. 36, 107 (1985)
    [104] S. K. Dey, K. D. Budd, D. A. Payne, “Thin-film ferroelectrics of
    PZT of sol-gel processing” IEEE Trans. UFFC 35 (1), 80 (1988)
    [105] K. D. Budd, S. K. Dey, D. A. Payne, Brit. Ceram. Soc. Proc. 36,
    107 (1985)
    [106] S. K. Dey, K. D. Budd, D. A. Payne, “Thin-film ferroelectrics of
    PZT of sol-gel processing” IEEE Trans. UFFC 35 (1), 80 (1988)
    [107] P. K. Coffman and S. K. Dey, “Structure evolution in the PbO-ZrO2-TiO2 sol-gel system: Part I — Characterization of prehydrolyzed precursors” J. Sol-Gel Sci. Technol. 1, 251 (1994)
    [108] R. W. Vest, J. Xu, “PbTiO3 films from metalloorganic
    Precursors” IEEE Trans. UFFC 35, 711 (1988)
    [109] G. H. Haertling, Ferroelectrics 119, 21 (1991)
    [110] Y. Ito et al. Int. Ferro. 14, 123 (1997)
    [111] 陳三元, 強介電薄膜之液相化學法製作, 工業材料 108, 100 (1995)
    [112] B. A. Tuttle, and R. W. Schwartz, “Solution deposition of ferroelectric Thin Films” Mater. Res. Bull. 20, 49 (1996)
    [113] S. lakavlev, C.-H. Solterbeck, M. Kuhnke, and M. Es-Souni, “Multiferroic BiFeO3 thin films processed via chemical solution deposition: structural and electrical characterization” J. Appl. Phys. 97, 094901 (2005)
    [114] S. R. Das, P. Bhattacharya, R. N. P. Choudhary and R. S. Katiyar,
    “Effect of La substitution on structural and electrical properties of
    BiFeO3 thin film” J. Appl. Phys. 99, 066107(2006)
    [115] Yao Wang, Qing-hui Jiang, Hong-cai He, and Ce-Wen Nan,
    “Multiferroic BiFeO3 thin films prepared via a simple sol-gel
    method” Appl. Phys. Lett. 88, 142503(2006)
    [116] Hongri Liu, Zuli Liu, Qing Lu and Kailun Yao, “ferroelectric properties of BiFeO3 films grown by sol-gel process” Thin Solid Films, 500, 105-109(2006)
    [117] Y. W. Li, J. L. Sun, J. Chen, X. J. Meng and J. H. Chu, “Preparation and characterization fo BiFeO3 thin films grown on LaNiO3-caoted SrTiO3 substrate by chemical solution deposition” Journal of Crystal Growth 285, 595-599(2005)
    [118] C. Michel, J. M. Moreau, G. D. Achenbach, R. Gerson, and W. J.
    James, “The atomic structure of BiFeO3” Solid-state
    Communication, Vol. 7, pp. 701-704(1969)
    [119] 鐘金峰, “化學液相法製備BiFeO3氧化物薄膜” , 清華大學, 碩
    士論文, (2006)
    [120] 李奕賢,“鐵酸鉍複鐵式薄膜之晶體成長與分析”, 清華大學,
    博士論文, (2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE