簡易檢索 / 詳目顯示

研究生: 陳韋辰
Chen, Wei-Chen
論文名稱: 藉由簡單隨機漫步之網路分析
Network Analysis by Simple Random Walks
指導教授: 張正尚
Chang, Cheng-Shang
口試委員: 王忠炫
李端興
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 37
中文關鍵詞: 複雜網路隨機漫步節點涵蓋時間
外文關鍵詞: complex networks, random walks, vertex cover time
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本論文中我們提出三種估算網路(圖型)特性的估算方法,分別用來估算:(1)平均連結數,(2)節點涵蓋時間,以及(3)群聚係數。我們的關鍵想法在於藉由一個簡單隨機漫步走過少量的節點來估算整體網路的特性。在此論文裡,簡單隨機漫步的停止時機設定在當簡單隨機漫步走過目標比例的節點時,隨機漫步即會停止並利用估算演算法進行估算。為了要估算一個網路的平均連結數,我們從簡單隨機漫步測量取得的多餘連結分佈來推導出一個估算演算法。為了要估算一個圖型中少量節點的節點涵蓋時間,我們從一個同樣大小的完整連結圖型來推導出一個估算演算法,其中完整連結圖型的節點涵蓋時間可從彩券收集者問題來近似計算取得。為了要估算一個網路的群聚係數,我們直接從群聚係數的定義提出一個估算方法,其中群聚係數的定義為:網路中一個節點的兩個相連鄰近節點也彼此互相連結的機率。在論文的最後,我們將上述的三種網路特性估算方法分別應用在兩種電腦產生的隨機圖型(ER模型和Configuration模型)以及一個真實世界的Facebook紐奧良地區網路,並展示其模擬結果。


    Contents List of Figures List of Tables 1 Introduction 2 Estimation method 2.1 Mean degree and degree distribution 2.2 Vertex cover time 2.3 Clustering coefficient 3 Simulation results 3.1 Random graphs 3.1.1 Mean degree 3.1.2 Vertex cover time 3.1.3 Clustering coefficient 3.2 Facebook New Orleans network 3.2.1 Mean degree 3.2.2 Vertex cover time 3.2.3 Clustering coefficient 4 Conclusion

    [1] D. Aldous, J. Fill, “Reversible Markov Chains and Random Walks on Graphs,” (unpublished,1999), http://stat-www.berkeley.edu/users/aldous/RWG/book.html
    [2] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovasz, and C. Rackoff, Random walks:“Universaltraversal sequences, and the complexity of maze problems.” In Proceedings of the 20th Annual IEEE Symposium on Foundations of Computer Science, 1979, pp.218 - 223.
    [3] U. Feige, “A tight upper bound for the cover time of random walks on graphs,”Random Struct Algorithms 6 (1995), 51 - 54.
    [4] U. Feige, “A tight lower bound for the cover time of random walks on graphs,”Random Struct Algorithms 6 (1995), 433 - 438.
    [5] C. Cooper and A. M. Frieze, “The cover time of sparse random graphs,” Proc SODA, 2003.
    [6] C. Cooper and A. M. Frieze, “The cover time of random regular graphs,” SIAM J Discrete Math 18 (2005), 728 - 740.
    [7] C. Cooper and A. M. Frieze, “The cover time of the preferential attachment graph,”J Combin Theory B 97(2007), 269 - 290.
    [8] C. Cooper and A. M. Frieze, “The cover time of the giant component of a random graphs,” Random Structures and Algorithms, 32(4): 401 - 439, 2008.
    [9] C. Cooper and A. M. Frieze, “The cover time of random geometric graphs,” 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA09), pages 48 - 57, 2009.
    [10] D. J. Watts and S. H. Strogatz, (1998) Nature 393, 440 - 442.
    [11] M. Dwass, “Simple random walk and rank order statistics,” Ann. Math. Statist. 38 (1967), pp. 1042 - 1053.
    [12] M. E. J. Newman, S. H. Strogatz, and D. J. Watts Nikoloski, and D. Wagner,“Random graphs with arbitrary degree distributions and their applications,” Physical
    Review E64, 026118(2001).
    [13] J. Jonasson, “On the cover time of random walks on random graphs,” Combinatorics Probab Comput 7 (1998), 265 - 279.
    [14] Arthur T. Benjamin, Gregory O. Preston, Jennifer J. Quinn, “A stirling Ecounter with Harmonic Numbers,” (2002) Mathematics Magazine, 75 (2) pp 95 - 103.
    [15] M. Girvan and M. E. J. Newman, ”Community structure in social and biological networks”, Proc. Natl. Acad. Sci. U.S.A., vol. 99, p. 7821 ,2002.
    [16] P. Erd¨os and A. R´enyi, “On random graphs,” Publicationes Mathematicae Debrencen 6, 290, 1959.
    [17] M. E. J. Newman, “The structure and function of complex networks,” SIAM Review 45, 167 - 256 (2003).
    [18] M. E. J. Newman, Networks: an Introduction. Oxford, 2010.
    [19] Barry C. Arnold (1983). Pareto Distributions. International Co-operative Publishing House. ISBN 0-899974-012-1.
    [20] Gabor Csardi, Tamas Nepusz: The igraph software package for complex network research. InterJournalComplex Systems, 1695, 2006.
    [21] Duan-Shin Lee, Cheng-Shang Chang, Wen-Gui Ye and Jia-Shin Ye, ”Formation of Social Networks by Random Triad Connections.”
    [22] Bimal Viswanath and Alan Mislove and Meeyoung Cha and Krishna P. Gummadi,“On the Evolution of User Interaction in Facebook,” Proceedings of the 2nd ACM SIGCOMM Workshop on Social Networks (WOSN’09), Barcelona, Spain, August,
    2009.
    [23] M. Molloy and B. Reed, “A critical point for random graphs with a given degree sequence,” Random Structures and Algorithms 6, 161 - 179 (1995).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE