研究生: |
曾晉沅 Tseng, Chin-Yuan |
---|---|
論文名稱: |
以SOI晶片實現微機電共振式磁力計 Implementation of SOI-based MEMS Resonant Magnetometer |
指導教授: |
方維倫
Fang, Weileun |
口試委員: |
吳名清
李昇憲 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | SOI晶片 、微機電技術 、共振式磁力計 、勞侖茲力 |
外文關鍵詞: | SOI wafer, MEMS, Resonant magnetometer, Lorentz force |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出以SOI晶片實現微機電共振式磁力計,運用SOI晶片的元件層和處理層結構配置以及晶片氧化層厚度所定義的感測間隙,搭配勞侖茲力原理,設計出能夠感測同平面磁場之微機電共振式磁力計。研究內容包含微機電共振式磁力計感測原理的理論介紹、公式推導,並結合理論計算與模擬驗證來達成符合地磁感測應用之磁力計元件設計。元件製程方面,透過SOI晶片製程之規劃發展出符合磁力計元件之製程,並以實際的製程實驗製作出磁力計元件。元件測試的部分,透過靜態量測分析元件的厚度、曲率半徑對於院件性能之影響,動態量測則包含元件頻率響應、操作頻率與操作環境之關係。最後透過實際的磁場量測實驗,測試元件操作於常壓以及真空環境下的建磁場感測性能,驗證本研究所開發之磁力計元件可行性。
This thesis presents a SOI-base MEMS resonant magnetometer. By way of theoretical analysis, simulation, process development and field measurement, a Lorentz force MEMS resonant magnetometer for geomagnetic field detection has been implemented. The presented MEMS resonant magnetometer has features of:(1) fabrication process is reduced by buried-oxide defined sensing gap, (2)improved sensitivity by reducing sensing gap thickness, (3)multi-axis detection magnetometer can be accomplished by means of structural design and electrical interconnection between device and handle layer, (4)MEMS inertial sensor compatible process for sensor integration. Furthermore, according to design concept of 1-axis magnetometer, a 3-axis magnetometer for compass application has been deigned.
[1] P. Ripka,“Magnetic sensors and magnetometers,” 2001.
[2] J. Lenz and A.S. Edelstein, “Magnetic sensors and their applications,” IEEE Sensors Journal, 6, NO. 3, 2006.
[3] E.H. Hall, “On a New Action of the Magnet on Electric Currents,” American Joirnal of Mathematics, 2, p.287, 1879.
[4] S.M. Sze, “Semiconductor Sensors,” John Wiley & Son, Inc, 1994.
[5] M. Epstein, R.B. Schulz, “Magnetic-field pickup for low-frequency radio-interference measuring sets,” Institute of Radio Engineers Transactions on Electron Devices, vol. 8, pp.70-77, 1961.
[6] http://www.asahi-kasei.co.jp/akm/en/product/ak8975b/ak8975b.html
[7] http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00213470.pdf
[8] D.J. Mapps, “Magnetoresistive sensors,” Sens. And Actuators A, vol. 59, pp 9-19, 1997.
[9] M.N. Baibich, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett., Vol. 61, pp.2472-2475, 1988.
[10] G. Binasch, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B, Vol. 39, pp4828-4830, 1989.
[11] P.P. Freitas, “Spin valve sensors,” Sens. And Actuators A, vol. 81, pp 2-8, 2000.
[12] R.S. Popovic, P.M. Drljaca, C. Schott, “Bridging the gap between AMR, GMR, and Hall magnetic sensors,” 2002.
[13] P. Ripka , “New directions in fluxgate sensors,” Balatonfured, Hungary, 2000.
[14] R. Gottfded-Gotffried , W. Budde, R. Jahne, H. Kuck, B. Sauer, S. Ulbricht, U. Wende, “A miniaturized magnetic-field sensor system consisting of a planar fluxgate sensor and a CMOS readout circuitry,” Sensors and Actuators A , pp.443-447,1996.
[15] M. Schneider, S . Kawahito, Y. Tadokoro, and H. Baltes, “High Sensitivity CMOS MicroFluxgate Sensor, ” Electron Devices Meeting, 1997.. Technical Digest., International
[16] L. Chiesi, P. Kejik, B. janossy, R.S. Popovic, “CMOS planar 2D micro-fluxgate sensor, ” Sensors and Actuators A, pp. 174-180, 2000.
[17] P.M. Drljaca,P. Kejik,F. Vincent,D. Piguet,F. Gueissaz,R.S. Popvic, “Single core fully integrated CMOS micro-fluxgate magnetometer, ” Sensors and Actuators A, pp. 236-241, 2004.
[18] H.H. Yang, N.V. Myung, J. Yee, D.Y. Park, B.Y. Yoo, M. Schwartz, K. Nobe, J.W. Judy, “Ferromagnetic micromechanical magnetometer,” Sens. And Actuators A, 97-98, pp.88-97, 2002.
[19] J. Gaspar, H. Li, P.P. Freitas, V. Chu, J.P. Conde, “Integrated magnetic sensing of electrostatically actuated thin-film microbridges,” J. Microelectromech. Syst., 5, pp.550-556, 2003.
[20] F. Keplinger, S. Kvasnica, A Jachimowicz, F. Kohl, J. Steurer, H Hauser, “Magnetic field sensor with optical readout,” Sens. And Actuators A, 110, pp 12-118, 2004.
[21] V. Beroulle, Y. Bertrand, L. Latorre, P Nouet, “Monolithic piezoresistive CMOS magnetic field sensors,” Sens. And Actuators A , 103, pp 23-32, 2003.
[22] R. Sunier, T. Vancura, Y. Li, K. Kay-Uwe, H. Baltes, O. Brand, “Resonant magnetic field sensor with frequency output,” J. Microelectromech. Syst., 15, pp 1098–1107, 2006.
[23] Zs. Kadar, A. Bossche, P.M. Sarro, J.R. Mollinger, “Magnetic-field measurement using an integrated resonant magnetic-field sensor,” Sens. And Actuators A, 70, pp. 225–232, 1998.
[24] H. Emmerich, M. Schofthaler, “Magnetic field measurements with a novel surface micromachined magnetic-field sensor,” IEEE Transactions on Electron Devices, 47, pp.972-977, 2000.
[25] B. Bahreyni, C. Shafai, “A resonant micromachined magnetic field sensor,” IEEE Sensors Journal, 7, pp.1326-1334, 2007.
[26] M.J. Thompson, M. Li, D.A. Horsley, “ Low power 3-axis Lorentz force navigation magnrtometer,” IEEE MEMS, pp.593-596, 2011.
[27] A.L. Herrera-May, P.J. Garcia-Ramirez, L.A. Aguilera-Cortes, J. Martinez-Castillo, A. Carvajal, L. Garcia-Gonzalez, E. Figueras-Costa, “A resonant magnetic field microsensor with high quality factor at atmospheric pressure,” J. Micromech. Microeng., 19, 015016(11p), 2009.
[28] C.P. Hsu, M.C. Yip, W. Fang, “Implementation of a gap-closing differential capacitive sensing Z-axis accelerometer on an SOI wafer,” J. Micromech. Microeng., 19, 075006(9p), 2009.
[29] A.L. Herrera-May, L.A. Aguilera-Cortes, P.J. Garcia-Ramirez, E. Manjarrez, “Resonant Magnetic field sensor based on MEMS technology,” Sensors, 9, pp.7785-7813, 2009.
[30] J. Kyynarainen, J. Saarilahti, H. Kattelus, A. Karkkainen, T. Meinander, A. Oja, P. Pekko, H. Seppa, M. Suhonen, H. Kuisma, S. Ruotsalainen, M. Tilli, “A 3D micromechanical compass,” Sens. And Actuators A, 142, pp.561-568, 2008.
[31] K.E.Petersen, “Silicon as a mechanical material,” Proceeding of the IEEE, 70, no.5, May 2008.