研究生: |
許元滔 Hsu, Yuan-Tao |
---|---|
論文名稱: |
體心立方低中高熵合金不同溫度下之微奈米尺度機械性質及變形行為研究 Micro-to-Nano Mechanical Properties and Deformation Behaviors of Body-centered Cubic Low-, Medium- and High-entropy Alloys at Different Temperatures |
指導教授: |
張守一
Chang, Shou-Yi |
口試委員: |
蔡銘洪
Tsai, Ming-Hung 蔡哲瑋 Tsai, Che-Wei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2021 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 高熵合金 、溫度 、微奈米尺度機械性質 、變形行為 |
外文關鍵詞: | High-entropy Alloys, Temperatures, Micro-to-Nano Mechanical Properties, Deformation Behaviors |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高熵合金為多種主元素以相近比例混合形成之合金,由於組成元素種類眾多,原子間尺寸差異導致嚴重晶格扭曲效應,造就了許多異於傳統的特殊機械性質與變形行為。尤其在不同溫度下,高熵合金仍能表現出擁有高強度、高延展性、破壞韌性、高溫穩定性、抗疲勞能力等絕佳的機械性質。其中,BCC 結構的耐火高熵合金在高溫下能夠維持相穩定性,同時具備極佳的抗軟化能力。因此延續本實驗室過去對BCC 低熵至高熵合金室溫機械性質與變形行為的研究,本研究在不同溫度下對BCC結構一元 (1B) W、三元 (3B) WTaMo與五元 (5B) WTaMoNbV 高熵合金不同晶粒方向進行奈米壓測試、微米柱壓縮測試及微米柱TEM 縱剖面分析,來探討溫度對高熵合金特殊機械性質影響及其背後的變形機制。實驗結果顯示,高熵合金彈性異向性及塑性異向性在任何溫度皆比傳統合金來得小。高熵合金微米柱壓縮滑移平面及應力應變曲線抖動皆較傳統合金不明顯,顯示高熵合金差排移動傾向短程差排滑移為主,同時高熵合金維持較高降伏強度的特性,表現出高熵合金優於傳統合金的高溫抗軟化能力。
High-entropy alloys (HEAs) are solid solutions that consist of multi-principal elements with near-equimolar ratios. Due to the diversity of constituent elements, atomic size difference leads to severe lattice distortion effect, which results in many special mechanical properties that are unique from traditional ones. At different temperatures, high-entropy alloys also exhibit excellent mechanical properties such as high strength, ductility, fracture toughness, high temperature stability and fatigue resistance. Among all this family, the refractory high-entropy alloy with BCC structure can maintain phase stability at high temperatures and has excellent softening resistance. Therefore, continuing our laboratory's previous research on the mechanical properties and deformation behavior of BCC low to high-entropy alloys at room temperature, in this research we conducted nanoindentation tests, micropillar compression test and TEM cross-section observation on grains with different crystallographic orientations from W, WTaMo and WTaMoNbV high-entropy alloys at different temperature to explore the effect of temperature on mechanical properties and deformation mechanism. Research shows that the elastic and plastic anisotropy of high-entropy alloys are smaller than traditional alloys at any temperature. Slip plane of high-entropy alloys and serrations of stress-strain curve are less obvious than traditional alloys, showing that high-entropy alloys tend to move in short-range dislocation slips. High-entropy alloys maintain the characteristics of high yield strength, which has better high-temperature softening resistance than traditional alloys.
參考文獻
[1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements Novel Alloy Design Concepts and Outcomes, Advanced Engineering Materials 6 (2004) 299-303.
[2] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122 (2017) 448-511.
[3] E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys, Nature Reviews Materials 4(8) (2019) 515-534.
[4] A. L., Greer, Confusion by design, Nature vol. 366 (1993).303-304,
[5] X. Yang Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-component Alloys, Advanced Engineering Materials 10(6) (2008) 534-538.
[6] E. J. Pickering, N. G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews 61(3) (2016) 183-202.
[7] Sathiyamoorthi Praveen,Hyoung Seop Kim, High-Entropy Alloys: Potential Candidates for High-Temperature Applications – An Overview, Advanced Engineering Materials 1700645 (2018) 1-22.
[8] C. Kenel, N.P.M. Casati, D.C. Dunand, 3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices, Nat Commun 10(1) (2019) 904..
[9] Xue hui Yan, Yong Zhang, Functional properties and promising applications of high entropy alloys, Scripta Materialia 187 (2020)188-193
[10] X.Z. Lim, Metal Mixology, Nature 533 (2016) 306-307.
[11] Zhipeng Wang, Qihong Fang, Jia Li, Bin Liu, Yong Liu, Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys, Journal of Materials Science & Technology 34 (2018) 349-354.
[12] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.
[13] M. Naeem, H. Y. He, F. Zhang, H. L. Huang, S. Harjo, T. Kawasaki, B. Wang, S. Lan, Z. D. Wu, F. Wang, Y. Wu, Z. P. Lu, Z. W. Zhang, C. T. Liu, and X. L. Wang, Cooperative deformation in high-entropy alloys at ultralow temperatures, Science Advances 6 (2020) 1-8.
[14] Sadık Olguner, A. Tolga Bozdana, The effect of friction coefficient on punch load and thickness reduction in deep drawing process, International Journal of Materials Research 3 (2016) 64-68.
[15] J.W. Bae, J.G. Moon, M. J. Jang, D.H. Ahn,S.H. Joo, J.M. Jung, D. Yim, H. S. Kim, Deep Drawing Behavior of CoCrFeMnNi High-Entropy Alloys, Metallurgical and Materials Transactions A 48 (2017) 4111-4120.
[16] O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics 19(5) (2011) 698-706.
[17] Y. Zou, J.M. Wheeler, H. Ma, P. Okle, R. Spolenak, Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability, Nano Lett 17(3) (2017) 1569-1574..
[18] K.Y. Tsai, M.H. Tsai,J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Materialia 61 (2013) 4887-4897.
[19] Z. Zhang, M.M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S.X. Mao, E.P. George, Q. Yu, R.O. Ritchie, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat Commun 6 (2015) 10143.
[20] Sijing Chen, Hyun Seok Oh, Bernd Gludovatz, Sang Jun Kim, Eun Soo Park, Ze Zhang, Robert O. Ritchie, Qian Yu, Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy, Nat Commun 11 (2020) 1-8
[21] Shu bin Wang, Ming xu Wu, Da Shu, Guo liang Zhu, Dong hong Wang, Bao deSun, Mechanical instability and tensile properties of TiZrHfNbTa high entropy alloy at cryogenic temperatures, Acta Materialia 201 (2020) 517-527
[22] Qing qing Ding, Xiao qian Fu, Dengke Chen, Hong bin Bei, Bernd Gludovatz, Jixue Li, Ze Zhang, Easo P. George, Qian Yu, Ting Zhu, Robert O. Ritchie, Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures, Materials Today 25 (2019) 21-27.
[23] Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature 534(7606) (2016) 227-30.
[24] Hailong Huang, Yuan Wu, Junyang He, Hui Wang, Xiongjun Liu, Ke An, Wei Wu, Zhaoping Lu, Phase-Transformation Ductilization of Brittle High-Entropy Alloys via Metastability Engineering, Advanced Materials. 29. (2017) 1701678
[25] Bing Chen, Suzhi Lia, Hongxiang Zong, Xiangdong Ding, Jun Sun, Evan Ma, Unusual activated processes controlling dislocation motion in body-centered-cubic high-entropy alloys, Proceedings of the National Academy of Sciences. 117(28) (2020) 16199-16206
[26] Francesco Maresca, William A.Curtin, Theory of screw dislocation strengthening in random BCC alloys from dilute to “High-Entropy” alloys, Acta Materialia.182. (2020) 144-162
[27] Francesco Maresca, William A.Curtin, Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K, Acta Materialia.182. (2020) 235-249
[28] Q.J. Li, H. Sheng, E. Ma, Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways, Nat Commun 10(1) (2019) 3563.
[29] J.R. Greer, C.R. Weinberger, W. Cai, Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations, Materials Science and Engineering: A 493(1-2) (2008) 21-25.
[30] N.N. Guo, L.Wang, L.S.Luo, X.Z.Li, Y.Q.Su, J.J. Guo, H.Z.Fu, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy, Materials & Design 81 (2015) 87-94
[31] M. Bönisch,Y. Wu, H. Sehitoglu, Twinning-induced strain hardening in dual-phase FeCoCrNiAl0.5 at room and cryogenic temperature, Scientific reports 8(1) (2018) 1-9.
[32] A.S. Schneidera, C.P. Frick, B.G. Clark, P.A. Gruber, E. Arzt, Influence of orientation on the size effect in bcc pillars with different critical temperatures, Materials Science and Engineering: A 528 (2011) 1540-1547
[33] Yuan Xiao, Roksolana Kozak, Walter Steurer, Ralph Spolenak, Jeffrey M. Wheeler, Yu Zou, Micro-compression studies of face-centered cubic and body-centered cubic high-entropy alloys: Size-dependent strength, strain rate sensitivity, and activation volumes, Materials Science and Engineering: A 790 (2020) 139429
[34] C.-C. Yen, G.-R. Huang, Y.-C. Tan, H.-W. Yeh, D.-J. Luo, K.-T. Hsieh, E.W. Huang, J.-W. Yeh, S.-J. Lin, C.-C. Wang, C.-L. Kuo, S.-Y. Chang, Y.-C. Lo, Lattice distortion effect on elastic anisotropy of high entropy alloys, Journal of Alloys and Compounds 818 (2020).
[35] Y.X. Ye, B.L.Musico, Z.Z.Lu, L.B.Xu, Z.F.Lei, V.Keppens, H.X.Xu, T.G.Nieh, Evaluating elastic properties of a body-centered cubic NbHfZrTi high-entropy alloy – A direct comparison between experiments and ab initio calculations, Intermetallics 109 (2019) 167-173.
[36] Won Seok Choi, Bruno C. De Cooman, Stefanie Sandlöbes, Dierk Raabe, Size and orientation effects in partial dislocation-mediated deformation of twinning-induced plasticity steel micro-pillars, Acta Materialia 98 (2015) 391-404
[37] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[38] Saideep Muskeri, Vahid Hasannaeimi, Riyadh Salloom, Maryam Sadeghilaridjani, Sundeep Mukherjee, Small-scale mechanical behavior of a eutectic high entropy alloy, Scientific reports 10 (2020) 1-12.
[39] Y.Ma, Y.H. Feng, Tekalign T.Debela, G.J.Peng, T.H.Zhang, Nanoindentation study on the creep characteristics of high-entropy alloy films: fcc versus bcc structures, International Journal of Refractory Metals and Hard Materials 54 (2016) 395-400.
[40] Dong-Hyun Lee, Moo-Young Seok, Yakai Zhao, In-Chul Choi, Jun yang He, Zhaoping Lu, Jin-YooSuh, Upadrasta Ramamurty, Megumi Kawasaki, Terence G.Langdon, Jae-ilJang, Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys, Acta Materialia 109 (2016) 314-322
[41] Qian Zhang, Ruirui Huang, Xuan Zhang, Tangqing Cao, Yunfei Xue, and Xiaoyan Li, Deformation Mechanisms and Remarkable Strain Hardening in Single-Crystalline High-Entropy-Alloy Micropillars/Nanopillars, Nano Letters 21(8) (2021) 3671-3679
[42] Adenike M. Giwa, Peter K. Liaw, Karin A. Dahmen, Julia R. Greer, Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi High Entropy alloy, Extreme Mechanics Letters 8 (2016) 220–228
[43] Y. Zou, S. Maiti, W. Steurer, R. Spolenak, Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy, Acta Materialia 65 (2014) 85-97.
[44] Sheng yuan Peng, Ke JinXin Yi, Zhaohui Dong, Xun Guo, Ying Liu,Yang yang Cheng, Nannan Jia, Huiling Duan, Jianming Xue, Mechanical behavior of the HfNbZrTi high entropy alloy after ion irradiation based on micro-pillar compression tests, Journal of Alloys and Compounds 892 (2022) 162043.
[45] Y. Zou, Huan. Ma, R. Spolenak, Ultrastrong ductile and stable high-entropy alloys at small scales, Nature Communications 6 (2015) 1-8.
[46] Zhaobing Cai, Xiufang Cui, Guo Jin, Binwen Lu, Danli Zhang, Zhan ming Zhang, In situ TEM tensile testing on high-entropy alloy coating by lasersurface alloying, / Journal of Alloys and Compounds 708 (2017) 380-384.
[47] Zhaobing Cai, Xiufang Cui, Erbao Liu, Yang Li, Meiling Dong, Bingwen Lu, Guo Jin, Fracture behavior of high-entropy alloy coating by in-situ TEM tensile testing, Journal of Alloys and Compounds 729 (2017) 897-902.
[48] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia 61(15) (2013) 5743-5755.
[49] Z. Zhang, H. Sheng, Z. Wang, B. Gludovatz, Z. Zhang, E.P. George, Q. Yu, S.X. Mao, R.O. Ritchie, Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy, Nat Commun 8 (2017) 14390.
[50] G. Laplanche, A. Kostka, C. Reinhart, J. Hunfeld, G. Eggeler, E.P. George, Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi, Acta Materialia 128 (2017) 292-303
[51] I. Tamura, Deformation-induced martensitic transformation and transformation-induced plasticity in steels, Metal Science 16 (1982) 245-253
[52] F.D.Fischera, G.Reisnerb, E.Wernerb, K.Tanakac, G.Cailletaudd, T.Antretter, A new view on transformation induced plasticity (TRIP), International Journal of Plasticity 16 (2000) 742-748
[53] Jia Li, Qihong Fang, Bin Liu, Yong Liu, Transformation induced softening and plasticity in high entropy alloys, Acta Materialia 147 (2018) 35-41
[54] Q. Ding, Y. Zhang, X. Chen, X. Fu, D. Chen, S. Chen, L. Gu, F. Wei, H. Bei, Y. Gao, M. Wen, J. Li, Z. Zhang, T. Zhu, R.O. Ritchie, Q. Yu, Tuning element distribution, structure and properties by composition in high-entropy alloys, Nature 574(7777) (2019) 223-227.
[55] T.M. Smith, M.S. Hooshmand, B.D. Esser, F. Otto, D.W. McComb, E.P. George, M. Ghazisaeidi, M.J. Mills, Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy, Acta Materialia 110 (2016) 352-363.
[56] X.D. Xu, P. Liu, Z. Tang, A. Hirata, S.X. Song, T.G. Nieh, P.K. Liaw, C.T. Liu, M.W. Chen, Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi, Acta Materialia 144 (2018) 107-115.
[57] S. H. Oh, M. Legros, D. Kiener, and G. Dehm, In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal, Nature materials 8. (2009) 95-100.
[58] C. Q. Sun, "Dominance of broken bonds and nonbonding electrons at the nanoscale, Nanoscale 2 (2010) 1930-1961.
[59] H Yilmaz, C. J. Williams, J. Risan, B. Derby, (2019). The size dependent strength of Fe, Nb and V micropillars at room and low temperature. Materialia 7 (2019) 100424.
[60] I.Ryu, J. D Gravell, W. Cai, W. D.Nix, H.Gao, Intrinsic size dependent plasticity in BCC micro-pillars under uniaxial tension and pure torsion, Extreme Mechanics Letters 40 (2020) 100901.
[61] W. Wang and K. Lu, Nanoindentation measurement of hardness and modulus anisotropy in Ni 3 Al single crystals, Journal of Materials Research 17 (2002) 2314-2320.
[62] J. J. Vlassak and W. Nix, Measuring the elastic properties of anisotropic materials by means of indentation experiments, Journal of the Mechanics and Physics of Solids 42 (1994) 1223-1245.
[63] B. Viswanath, R. Raghavan, U. Ramamurty, and N. Ravishankar, Mechanical properties and anisotropy in hydroxyapatite single crystals, Scripta Materialia, 57 (1994) 361-364.
[64] J. Kiely, J. Houston, Nanomechanical properties of Au (111),(001), and (110) surfaces, Physical Review B, 57, (1998) 12588.
[65] J. Vlassak, M. Ciavarella, J. Barber, and X. Wang, The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape, Journal of the Mechanics and Physics of Solids, 51 (2003) 1701-1721.
[66] [66] Chung, D.H. and W.R. Buessem, The Elastic Anisotropy of Crystals, Journal of Applied Physics, 38(5) (1967) 2010-2012.
[67] C. Howard,C.D. Judge, P. Hosemann, Applying a new push-to-pull micro-tensile testing technique to evaluate themechanical properties of high dose Inconel X-750, Materials Science & Engineering A, 748 (2019) 396-406.
[68] P.A. Loginov, A.A. Zaitsev, I. Konyashin, D.A. Sidorenko, A.S. Orekhov, E.N. Avdeenko, E.A. Levashov, In-situ observation of hardmetal deformation processes by transmissionelectron microscopy. Part II: Deformation caused by tensile loads, International Journal of Refractory Metals & Hard Materials, 84 (2019) 105017.
[69] P. A. Loginov, D. A. Sidorenko, A. S. Orekhov, E. A. Levashov, A novel method for in situ TEM measurements of adhesion at the diamond–metal interface, Scientifc Reports, 11 (1) (2021) 1-10.
[70] Nathan R. Velez, Frances I.Allen, Mary Ann Jones, Jenn Donohue, Wei Li, Kristofer Pister, Sanjay Govindjee, Gregory F. Meyers, Andrew M. Minor, Nanomechanical testing of freestanding polymer flms: in situ tensile testing and Tg measurement, Journal of Materials Research (2021) 1-9.
[71] Wu, Y.D., et al., Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys, 83 (2015) 651-660.
[72] É. Fazakas, V. Zadorozhnyy, L.K.Varga, A.Inoue, D.V. Louzguine-Luzgin, FuyangTian, L. Vitos, Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr), Int. Journal of Refractory Metals and Hard Materials 47 (2014) 131–138.
[73] Jithin Joseph, Tom Jarvis, Xinhua Wu, Nicole Stanford, Peter Hodgson, Daniel Mark Fabijanic, Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys, Materials Science&Engineering A, 633 (2015) 184-193.
[74] Chien-Chang Juan, Ming-Hung Tsai, Che-Wei Tsai,Chun-Ming Lin,Woei-Ren Wang, Chih-Chao Yang, Swe-Kai Chen, Su Jien Lin, Jien-Wei Yeh, Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys, Intermetallics 62 (2015) 76-83.
[75] S. Fang, X. Xiao, L. Xia, W. Li, Y. Dong, Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses, Journal of Non-Crystalline Solids 321(1-2) (2003) 120-125.
[76] Beake, B.D. and S. Goel, "Incipient plasticity in tungsten during nanoindentation: Dependence on surface roughness, probe radius and crystal orientation," International Journal of Refractory Metals and Hard Materials, 75 (2018) 63-69.
[77] W. J. Chen, S. Y. Chang, Anisotropic Mechanical Properties and Deformation Behaviors of Body-centered Cubic Low-, Medium- and High-entropy Alloys, National Tsing Hua University, 2018.
[78] Fulin Wang, Glenn H. Balbus, Shuozhi Xu, Yanqing Su, Jungho Shin, Paul F. Rottmann, Keith E. Knipling, Jean-Charles Stinville, Leah H. Mills, Oleg N. Senkov, Irene J. Beyerlein, Tresa M. Pollock, Daniel S. Gianola, Multiplicity of dislocation pathways in a refractory multiprincipal element alloy, Science, 370(6512) (2020) 95-101.
[79] G. S. Pisarenko, V. A. Borisenko, Y. A Kashtalyan, The effect of temperature on the hardness and modulus of elasticity of tungsten and molybdenum (20–2700),. Soviet Powder Metallurgy and Metal Ceramics, 1(5) (1964) 371-374.
[80] James S.K.-L. Gibson, Steve G. Roberts, David E.J. Armstrong, High temperature indentation of helium-implanted tungsten,. Materials Science and Engineering: A, 625 (2015) 380-384.
[81] Oscar Torrents Abad, Jeffrey M.Wheeler, JohannMichler, Andreas S.Schneider, EduardArzt, Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Materialia, 103, (2016) 483-494.
[82] Chanho Lee, Francesco Maresca, Rui Feng, Yi Chou, T. Ungar, Michael Widom, Ke An, Jonathan D. Poplawsky, Yi-Chia Chou, Peter K. Liaw, W. A. Curtin, Strength can be controlled by edge dislocations in refractory high-entropy alloys, Nature Communications, 12(1) (2021) 1-8.
[83] Rui Feng, Bojun Feng, Michael C. Gao, Chuan Zhang, Joerg C. Neuefeind, Jonathan D. Poplawsky, Yang Ren, Ke An, Michael Widom, Peter K. Liaw, Superior High-Temperature Strength in a Supersaturated Refractory High-Entropy Alloy, Advanced Materials, 2102401 (2021).
[84] Rajeshwar R.Eleti, Atul H.Chokshi, AkinobuShibata, NobuhiroTsuji, Unique high-temperature deformation dominated by grain boundary sliding in heterogeneous necklace structure formed by dynamic recrystallization in HfNbTaTiZr BCC refractory high entropy alloy, Acta Materialia, 183 (2020) 64–77.
[85] Rajeshwar R. Eleti, Tilak Bhattacharjee, Akinobu Shibata, Nobuhiro Tsuji, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy, Acta Materialia, 171 (2019) 132-145.
[86] Qin qin Wei, Guo qiang Luo, Rong Tu, Jian Zhang, Qiang Shen, Yu jie Cui, Yun wei Gui, Akihiko Chiba, High-temperature ultra-strength of dual-phase Re0.5MoNbW(TaC)0.5 high-entropy alloy matrix composite, Journal of Materials Science & Technology, 84 (2021) 1-9.
[87] X.W. Liu, Z.C Bai, X.F. Ding, J.Q. Yao, L. Wang, Y.Q. Su, Z.T. Fan, J.J. Guo, A novel light-weight refractory high-entropy alloy with high specific strength and intrinsic deformability, Materials Letters 287 (2021) 129255.