簡易檢索 / 詳目顯示

研究生: 許惠珍
論文名稱: 多壁奈米碳管之於大腸桿菌之影響研究
The Effects of Multi-walled Carbon Nanotubes on Escherichia coli
指導教授: 戴念華
宋信文
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 86
中文關鍵詞: 多壁奈米碳管抗菌
外文關鍵詞: multi-walled carbon nanotubes, antimicrobial
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究首先測試三種不同形式之多壁奈米碳管(原始、純化和官能基化多壁奈米碳管)對典型微生物(大腸桿菌)的影響。經由掃描式電子顯微鏡(SEM)及螢光顯微鏡分析結果,是由於菌體與多壁奈米碳管的直接接觸造成其菌體外膜損傷而導致死亡,尤其在培養液中擁有極佳分散性之官能基化多壁奈米碳管能持續性地抑制細菌的存活率。
      接著進一步利用化學氣相沉積法(快速升降溫系統)合成垂直成長在玻璃基板上的多壁奈米碳管叢(MWCNT forest)以探討其一維結構如何影響微生物。MWCNT forest與大腸桿菌培養24小時之實驗結果藉由場發射顯微鏡的觀察,可發現大部分附著在MWCNT forest上的大腸桿菌並無法維持外膜的形狀,此結果提供了一個有效的抗菌之應用。


    Abstract ……………………………………………………………i 摘要 …………………………………………………………………ii 誌謝 …………………………………………………………………iii 總目錄 ………………………………………………………………v 表索引 ………………………………………………………………vii 圖索引 ………………………………………………………………viii Chapter 1 緒論 1.1 奈米碳管的簡介 …………………………………………1 1.1.1 奈米碳管的起源 ……………………………………1 1.1.2 奈米碳管的結構 ……………………………………2 1.1.3 奈米碳管在醫療診斷、組織工程上之應用 ………4 1.1.4 奈米碳管之抗菌活性 ………………………………8 1.2 細菌之簡介 ………………………………………………10 1.2.1 細菌型態 ……………………………………………10 1.2.2 細菌的分類 …………………………………………12 1.2.3 細菌的生長曲線及生長需求 ………………………13 1.3 研究動機 …………………………………………………16 1.4 實驗規劃 …………………………………………………17 Chapter 2 多壁奈米碳管(MWCNTs)的製備 ………………………20 2.1 實驗動機 …………………………………………………20 2.2 絨球狀之多壁奈米碳管之合成 …………………………20 2.2.1 水平式懸浮觸媒化學氣相沉積法 …………………20 2.2.2 多壁奈米碳管合成實驗步驟 ………………………22 2.3 原始、純化和官能基化多壁奈米碳管粉末之製備 ……24 2.3.1 絨球狀多壁奈米碳管之粉碎 ………………………24 2.3.2 原始多壁奈米碳管粉末之純化 ……………………24 2.3.3 原始多壁奈米碳管粉末之官能基化 ………………25 2.4 多壁奈米碳管溶液之製備 ………………………………26 2.5 原始、純化和官能基化多壁奈米碳管之形貌與性質 分析結果 …………………………………………………27 2.5.1 場發射電子顯微鏡之觀察結果 ……………………27 2.5.2 拉曼光譜儀之分析結果 ……………………………28 2.5.3 傅利葉轉換紅外線光譜儀之分析結果 ……………29 Chapter 3 原始、純化及官能基化多壁奈米碳管於大腸桿菌 之抑菌評估 ………………………………………34 3.1 實驗動機 …………………………………………………34 3.2 細菌的培養 ………………………………………………34 3.2.1 單一菌落之分離 ……………………………………34 3.2.2 過夜菌液之培養 ……………………………………35 3.2.3 Escherichia coli DH5α生長曲線的繪製…………35 3.3 多壁奈米碳管抗菌實驗方法及步驟 ……………………37 3.3.1 定性實驗之方法與流程 ……………………………37 3.3.2 E. coli死亡率(Loss of Viability)之定量實 驗方法 ………………………………………………42 3.4 結果與討論 ………………………………………………43 3.4.1 試樣處理過程之觀察 ………………………………43 3.4.2 PI / DAPI染色之螢光分析結果……………………44 3.4.3 場發射掃描式電子顯微鏡結果分析結果 …………46 3.4.4 Loss of Viability分析結果………………………48 Chapter 4 MWCNT forest對Escherichia coli DH5α的影響……61 4.1 實驗動機 …………………………………………………61 4.2 MWCNT forest的製備 ……………………………………61 4.2.1 MWCNT forest之分析結果 …………………………62 4.3 MWCNT forest對Escherichia coli DH5α之傷害性 測試 ………………………………………………………64 4.3.1 實驗方法與步驟 ……………………………………64 4.4 結果與討論…………………………………………………64 Chapter 5 結論 ……………………………………………………73 Chapter 6 參考文獻 ………………………………………………74 附錄A、PI/DAPI螢光染劑與三種形式多壁奈米碳管之關係探討 ………………………………………………………………78 附錄B、多壁奈米碳管於E. coli外膜之傷害程度探討 …………85

    [1] Sumio Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991)
    [2] Rice University: Rick Smalley’s Group Home Page Image Gallery, 1.
    [3] Kannan Balasubramanian ,and Marko Burghard, “Chemically functionalized carbon nanotubes”, Small, 1, 180 - 192 (2005).
    [4] Mildred S. Dresseelhaus, Gene Dresseelhaus, and Riichiro Saito, ‘‘Physics of carbon nanotubes’’, Carbon, 33, 883 - 891 (1995)
    [5] Peter J. F. Harris, “Carbon nanotubes and related structures : new materials for the twenty-first century”, Department of Chemisty, University of Reading.
    [6] Jean-Paul Salvetat, G. Andrew D. Briggs, Jean-Marc Bonard, Revathi R. Bacsa, Andrzej J. Kulik, Thomas Stöckli,1 Nancy A. Burnham, and László Forró, “Elastic and shear moduli of single-walled carbon nanotube ropes”, Physical Review Letters, 82, 944 - 947 (1999).
    [7] Ping Chen, Xiaobing Wu, Xuan Sun, Jianyi Lin, Wei Ji, and Kuang Lee Tan, “Electronic structure and optical limiting behavior of carbon nanotubes”, Physical Review Letters, 82, 2548 - 2551 (1999).
    [8] Ming Zheng, Anand Jagota, Ellen D. Semke, Bruce A. Diner, Robert S. Mclean, Steve R. Lustig, Raymond E. Richardson, and Nancy G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes”, Nature Materials, 2, 338 – 342 (2003).
    [9] Xiaogang Han, Yulin. Li, and Zhaoxiang Deng, “DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays”, Advanced. Materials, 19, 1518 – 1522 (2007).
    [10] Alexander Star, Jean-Christophe P. Gabriel, Keith Bradley, and George Gruner, “Electronic detection of specific protein binding using nanotube FET devices”, Nano Letters, 3, 459 – 463 (2003).
    [11] Yianbiao Zhang, Mandakini Kanungo, Alexander J. Ho, Paul Freimuth, Daniel van der Lelie, Michelle Chen, Samuel M. Khamis, Sujit S. Datta, A. T. Charlie Johnson, James A. Misewich, and Stanislaus S. Wong, “Functionalized carbon nanotubes for detecting viral proteins”, Nano Letters, 7, 3086 – 3091 (2007).
    [12] Tamir Gabay, Eyal Jakobs, Eshel Ben-Jacob, and Yael Hanein, “Engineered self-organization of neural networks using carbon nanotube clusters”, Physica A, 350, 611 – 621 (2005).
    [13] Nadine Wong Shi Kam, Michael O’Connell, Jeffrey A. Wisdom, and Hongjie Dai, “Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction”, PNAS, 102, 11600 – 11605 (2005).
    [14] Anna A. Shvedova, Vincent Castranova, Elena R. Kisin, Diane Schwegler-Berry, Ashley R. Murray, Vadim Z. Gandelsman, Andrew Maynard, and Paul Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells”, Journal of Toxicology and Environmental Health, Part A, 66, 1909 – 1926 (2003).
    [15] Nancy A. Monteiro-Riviere, Robert J. Nemanich, Alfred O. Inman, Yunyu Y. Wang, and Jim E. Riviere, “Multi-walled carbon nanotube interactions with human epidermal keratinocytes”, Toxicology Letters, 155, 377 – 384 (2005).
    [16] Chiu-Wing Lam, John T. James, Richard McCluskey, and Robert L. Hunter, “Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation”, Toxicological Sciences, 77, 126 – 134 (2004).
    [17] Massimo Bottini, Shane Bruckner, Konstantina Nika, Nunzio Bottini, Stefano Bellucci, Andrea Magrini, Antonio Bergamaschi, and Tomas Mustelin, “Multi-walled carbon nanotubes induce T lymphocyte apoptosis”, Toxicology Letters, 160, 121 – 126 (2006).
    [18] Pavan M.V. Raja, Jennifer Connolley, Gopal P. Ganesan, Lijie Ci, Pulickel M. Ajayan, Omkaram Nalamasu, and Deanna M. Thompson, ”Impact of carbon nanotube exposure, dosage and aggregation on smooth muscle cells”, Toxicology Letters, 169, 51 – 63 (2007).
    [19] Meike L. Schipper, Nozomi Nakayama-Ratchford, Corrine R. Davis, Nadine Wong Shi Kam, Pauline Chu, Zhuang Liu, Xiaoming Sun, Hongjie Dai, and Sanjiv S. Gambhir, “A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice”, Nature Nanotechnology, 3, 216 – 221 (2008).
    [20] Seoktae Kang, Mathieu Pinault, Lisa D. Pfefferle, and Menachem Elimelech, “Single-walled carbon nanotubes exhibit strong antimicrobial activity”, Langmuir, 23, 8670 - 8673 (2007).
    [21] Anna S. Brady-Este´vez, Seoktae Kang, and Menachem Elimelech, “Single-walled carbon nanotube filter for removal of viral and bacterial pathogens”, Small, 4, 481 - 484 (2008).
    [22] Jin-Woo Kim, Evgeny V. Shashkov, Ekaterina I. Galanzha, Nalinikanth Kotagiri, and Vladimir P. Zharov, “Photothermal antimicrobial nanotherapy and nanodiagnostics with self-assembling carbon nanotube clusters”, Lasers in Surgery and Medicine, 39, 622 – 634 (2007).
    [23] Ken S. Rosenthal, and James S. Tan, “Rapid review – Microbiology and Immunology” Elsevier (Singapore) Pte Ltd., 譯者:羅瑋瑜, 合記圖書出版社 (2008).
    [24] 曾士豪, “單壁奈米碳管量產及其光聲響性質之研究”, 國立清華大學材料科學工程學系 (2005)
    [25] Jie Liu, Andrew G. Rinzler, Hongjie Dai, Jason H. Hafner, R. Kelley Bradley, Peter J. Boul, Adrian Lu, Terry Iverson, Konstantin Shelimov, Chad B. Huffman, Fernando Rodriguez-Macias, Young-Seok Shon, T. Randall Lee, Daniel T. Colbert, and Richard E. Smalley, “Fullerene Pipes”, Science, 280, 1253 – 1255 (1998).
    [26] 陳陵援、吳慧眼, ”儀器分析”, 三民書局 (2004).
    [27] John Robertson, “Diamond-like amorphous carbon”, Materials Science and Engineering Review, 37, 129 – 281 (2002).
    [28] Jean-Christophe Charlier, Peter C. Eklund, Jun Zhu, and Andrea C. Ferrar, “Electron and phonon Properties of graphene : their relationship with carbon nanotubes”, Topics Applied Physics, 11, 673 – 709 (2008).
    [29] Mark A. Hamon, Jian Chen, Hui Hu, Yongsheng Chen, Misha E. Itkis, Apparao M. Rao, Peter C. Eklund, and Robert C. Haddon, “Dissolution of single-walled carbon nanotubes”, Advanced Materials, 11, 834 – 840 (1999).
    [30] Douglas B. Mawhinney, Viktor Naumenko, Anya Kuznetsova, and John T. Yates, “Infrared spectral evidence for the etching of carbon nanotubes: Ozone oxidation at 298 K”, Journal of American Chemical Society, 122, 2383 – 2384 (2000).
    [31] Lucjan Strekowski, and Beth Wilson, “Noncovalent interactions with DNA: An overview”, Mutation Research, 623, 3 – 13 (2007).
    [32] Takeshi Suzuki, Keiko Fujikura, Tetsuya Higashiyama, and Kuniaki Takata, “DNA staining for fluorescence and laser confocal microscopy”, The Journal of Histochemistry & Cytochemistry, 45, 49 – 53 (1997).
    [33] 李家維、陳家全、楊瑞森, “生物電子顯微鏡”, 國科會精儀中心 (2004).
    [34] Yinjie J. Tang, Jared M. Ashcroft, Ding Chen, Guangwei Min, Chul-Hyun Kim, Bipasha Murkhejee, Carolyn Larabell, Jay D. Keasling, and Fanqing Frank Chen, “Charge-associated effects of fullerene derivatives on microbial structural integrity and central metabolism”, Nano Letters, 7, 754 – 760 (2007).
    [35] 陳銘雄, “添加少量Ni於Fe/Si高溫成長垂直奈米碳管之影響及其扮演角色之研究”, 國立清華大學材料科學工程學系 (2007)
    [36] Tsungyen Tsai, Nyanhwa Tai, Kuangchung Chan, Shuhsing Lee LihHsiung Cann, and Yuyang Chang, “Growth of vertical aligned carbon nanotubes on glass substrate at 450 oC through the thermal chemicalvapor deposition method”, Diamond and Related Materials, in press.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE