研究生: |
沈信安 Hsin-An Shen |
---|---|
論文名稱: |
四方扁平薄型電子構裝(TQFP)之散熱效能分析 On Thermal Dissipation Efficiency Analysis for Thin Quad Flat Package (TQFP) |
指導教授: |
陳文華 博士
Dr. Wen-Hwa Chen 鄭仙志 博士 Dr. Wen-Hwa Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 四方扁平薄型電子構裝 、有限單元法 、自然對流條 、熱應力 、散熱效能 |
外文關鍵詞: | TQFP, finite element method, natural convection, thermal stress, Thermal Dissipation Efficiency |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要利用有限單元模擬及實驗量測方法探討四方扁平薄型電子構裝(Thin Quad Flat Package, TQFP)在JEDEC (Joint Electron Device Engineering Council) 規範的自然對流條件下之散熱效能。為了正確分析熱對流及輻射效應,本論文首先以紅外線熱像儀量測銲於測試基板上之TQFP構裝表面溫度場,並以此為熱傳邊界條件,應用ANSYS有限單元套裝軟體計算TQFP構裝內部溫度分佈,其結果並與晶片溫度測試實驗相驗證,以修正、建立一可靠之有限單元分析模型。以此模型為基礎,本論文接著深入評估文獻中採用之各種不同邊界熱傳模型之適用性。最後,本論文並歸納出一最佳的邊界熱傳模型,以評估各熱傳路徑之散熱比重,進而針對TQFP構裝主要散熱元件進行參數化分析及相關熱應力探討,以供TQFP構裝散熱效能與可靠度評估之參考。
By finite element simulation and experiments, this work focuses its attention on the thermal dissipation efficiency analysis for a Thin Quad Flat Package (TQFP) under a natural convection environment based on JEDEC (Joint Electron Device Engineering Council) specifications. To accurately account for the convection and radiation effects, the surface temperatures of the TQFP welded on the test board are first measured by the infrared (IR) thermometer and considered as the boundary conditions of the finite element calculation using the ANSYS program. To modify and establish a reliable finite element analysis model, the computed results are verified by the thermal test die measurement. By this model established, various heat transfer models developed in the literature are then evaluated. After selecting the most appropriate heat transfer model as the boundary conditions, this work further assesses the ratio of the thermal dissipation from each heat transfer path. Finally, the parameter analysis of the major thermal dissipation components and related thermal stress analysis are performed. The results could be used as a guideline for TQFP’s thermal dissipation management and reliability analysis.
Aghazadeh, M. and Mallik, D., 1990, “Thermal Characteristic of Single and Multilayer High Performance PQFP packages,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology-Part A, Vol. 20, No. 2, pp. 975-979.
Bar-Cohen, A., Kraus, A. D. and Davidson, S. F. , 1983, “Thermal Frontiers in the Design and Packaging of Microelectronic Equipment,” Mechanical Engineering No. 6, pp. 53-59.
Cooke, J. A. and Lee, S. W., 1989, “Finite Element Thermal Analysis of 144 Pin Plastic Flat Packs,” 5th IEEE SEMI-THERM Symposium, Research Triangle Park, pp. 59-62.
Edwards, D. R., Hwang, M. and Stearns B., 1995, “Thermal Enhancement of Plastic IC Packages,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, No. 1, pp. 57-67.
EIA/JEDEC Standard 1995, “Methodology for the Thermal Measurement of Component packages (Single Semiconductor Device),” EIA/JESD51
EIA/JEDEC Standard 1995, “Integrated Circuits Thermal Measurement Method-Electrical Test Method (Single Semiconductor Device),” EIA/JESD51-1
EIA/JEDEC Standard 1995, “Integrated Circuits Thermal Test Method Environment Conditions-Natural Convection (Still Air),” EIA/JESD51-2
EIA/JEDEC Standard 1996, ”Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages,” EIA/JESD51-3
Ellison, G. N., 1989, “Thermal Computations for Electronic Equipment,” R. E. Krieger Publishing Company, Malabar, FL.
Frank, Wu;John, Lau and Chen, K. L., 1997, “Thermal Evalution of a Cost-Effective Plastic Ball Grid Array Package-NuBGA,” 1997 Electronic Components Technology Conference, Palo Alto, pp. 309-318.
Graebner, J. E. and Azar, K., 1997, “Thermal Conductivity Measurements in Printed Wiring Boards,” Journal of Heat Transfer No. 119, pp. 401-405.
Hong, B. Z. and Yuan, T. D., 1997, “Heat Transfer and Nonlinear Thermal Stress Analysis of a Convective Surface Mount Package,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, Vol. 20, No. 2, pp. 123-219.
Hong, B. Z. and Yuan, T. D., 1998, “Integrated Flow-Thermomechanical Analysis of Solder Joints Fatigue in a Low Air Flow C4/CBGA Package,” The International Journal of Microcircuits and Electronic Packaging, Vol. 21, No. 2, pp. 137-145.
Pang, J. H. L. and Tan, C. K., 1998, “Thermal Analysis of a Wirebond Chip-on-Board Package,” 1998 InterSocity Conference on Thermal Phenomena, Singapore, pp.481-487.
Kays, W.M. and Crawford, M.E., 1980, Convective Heat and Mass Transfer, New York; McGraw-Hill, Ch. 9, pp. 133-160.
Kitano, M., Daikoku, T. and Kawai, S., 1991, “A Simple Analysis Method of Thermal Resistance of Plastic Packages,” Trans.JSME B 57(537), Hitach, Ltd., pp.1846-1850.
Lai, S. C., Lai, J. Y., Chen, C. R., Pu, M. H., Her, T. D. and Chen, C., 1997, ”Thermal Enhancement in QFP Package,” SEMI Technical Program Present, Packaging Seminar 1997, Taiwan, pp.67-73.
Lau, J. H. and Pao, Y. H., 1997, “Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies,” NewYork: McGraw-Hill, Inc.
Lee, T. Y. T. and Mahalingam, M., 1997, “Thermal Limits of Flip Chip Package–Experimentally Validated, CFD Supported Case Studies,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part B,Vol. 20, No. 1, pp. 94-103.
Lohan, J. and Davies, M., 1994, “Transient Thermal Behavior of a board-Mounted 160-Lead Plastic Quad Pack,” 1994 InterSociety Conference on Thermal Phenomena, Ireland, pp. 108-116.
Mertol, A., 1992, “Stress Analysis and Thermal Characterization of a High Pin Count PQFP,” Journal of Electronic Packaging, Vol. 114, pp. 211-220.
Mertol, A., 1993, “Optimozation of Extrude Type External Heat Sink for Multichip Module,” Journal of Electronic Packaging, Vol. 115, pp. 440-444.
Mertol, A., 1996, “Thermal Performance Comparision of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 2, pp. 427-443.
Military Standardization Handbook, MIL-HDBK-217C, 1979, “Reliability Prediction of Electronic Equipment,” USF, DOD.
Mulgaonker, S., Chambers, B., Mahalingam, M., Ganesan, G., Hause, V. and Berg, H., 1994, “Thermal Performance Limits of the QFP Family,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, Vol. 17, No. 4, pp. 573-581.
Pecht, M. G., Agarwal, R., McCluskey, P., Dishongh, T., Javadpour, S. and Mahajan, R., 1998, “Electronic Packaging Materials and Their Properties,” NewYork: CRC Press, Inc.
Ridsdale, G.,Joiner, B., Bigler, J. and Torres, V. M., 1994, “Thermal Performance Limits of the QFP Famly,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, Vol. 17, No. 4, pp. 427-443.
Sarvar, F., Poole, N. J. and Witting, P. A., 1990, “PCB Glass-Fibre Laminates: Thermal Conductivity Measurements and Their Effect on Simulation,” Journal of Electronic Materials, Vol. 19, No. 12, pp. 1345-1350.
Tanaka, M. and Takeuchi, Y. 1992, “Thermal Analysis of Plastic QFP with High Thermal Dissipation,” Proceedings of 42th Electronic Components and Technology Conference, Nagano, pp. 332-339.
Vinke, H. and Lasance, C. J. M., 1997, ”Compact Models for Accurate Thermal Characterization of Electronic Parts,” IEEE Transaction on Components, Packaging, and Manufacturing Technology-Part A, Vol. 20,No. 4, pp. 411-419.
Zhou, T., Hundt, M., and Motta, V., 1996, “Thermal Evalution of Standard and Power TQFP,” 12th IEEE SEMI-THERM Symposium, pp. 19-29.