研究生: |
彭玉容 Peng, Yu-Jung |
---|---|
論文名稱: |
化學氧化聚合碳材/聚砒硌複合材料之電化學特性與在超級電容器應用 Electrochemical characteristics of carbon/polypyrrole composites synthesized by chemical oxidative polymerization for supercapacitors |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
馬振基
MA, Chen-Chi 黃志彬 Huang, Chih-Pin 張仍奎 Chan, Jeng-Kuei 蔡德豪 TsaiI, De-Hao |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 聚砒硌 、還原氧化石墨烯與碳奈米管 、水性電解質 、有機電解質 、非對稱超級電容器 |
外文關鍵詞: | polypyrrole, reduced graphene oxide/carbon nanotube, aqueous electrolyte, organic electrolyte, asymmetric supercapacitor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以化學氧化合成法製備不同碳材與聚砒硌複合材料,包括還原氧化石墨烯/碳奈米管/聚砒硌(rGO/CNT/PPy)、碳奈米管/聚砒硌(CNT/PPy)及活性碳/聚砒硌(AC/PPy)複合材料,並系統性了解最佳組成比例以及在水相與有機相電解液的電化學特性。碳材形貌決定聚砒硌複合材料形貌進而影響電化學特性與特徵,rGO/CNT/PPy具有較佳的電容表現,於水相與有機相電解液之負電位下限分別延展至-0.8 V (vs. Ag/AgCl)與-2.5 V (vs. Ag/AgNO3, acetonitrile)。水相含鉀離子電解質可有效提升rGO/CNT/PPy電化學的可逆性與穩定性,水合離子半徑亦影響材料的電容性能表現如比電容值、氧化還原可逆性以及功率性能。另外電極配方導入碳黑(XC-72)有助於提高壽命與循環穩定性以及提升材料電化學性能。於有機相之不同極性電位窗循環測試以及水相的偏壓測試,皆說明rGO/CNT/PPy適合作為非對稱電容器之負極。以Mn3O4作為正極材料和rGO/CNT/PPy作為負極材料所組立之水相非對稱超級電容器,其電池電壓可達1.8 V,比能量與比功率性能為17.3Wh kg-1和7.36 kW kg-1。此非對稱超級電容器在電池電壓1.6 V展現理想的電容行為與卓越充放電循環穩定性,即便經過3250循環充放電次數,仍維持一樣的電容量性能。
Using chemical oxidation method, polypyrrole(PPy) has been polymerized onto different carbon materials including reduced graphene oxide/carbon nanotube (rGO/CNT), carbon nanotube (CNT) and activated carbon (AC), to form three composites that are denoted as rGO/CNT/PPy, CNT/PPy, and AC/PPy. The electrochemical characteristics of the above composites in aqueous electrolytes and organic electrolytes are systematically studied for the supercapacitor application. The morphologies of these composites depend on the shape of carbons and affect their electrochemical performance. The rGO/CNT/PPy provides higher specific capacitance than the others and its negative potential limit can be extended to -0.8 V (vs. Ag/AgCl) and -2.5 V (vs. Ag/AgNO3, acetonitrile) in aqueous electrolyte (0.5 M Na2SO4) and organic electrolyte (1M TEABF4/PC), respectively. The rGO/CNT/PPy shows improved reversibility and higher stability in the aqueous electrolyte containing K+. In addition, the introduction of carbon black (XC-72) into electrode preparation has been found to enhance the specific capacitance and the cycling stability.
The galvanostatic charge/discharge cycle test with different positive and negative potential ranges in the organic electrolyte as well as the potential-bias stress test under different positive and negative potentials in various aqueous electrolytes are employed to confirm the stability of the rGO/CNT/PPy composite. As a result, this composite is a suitable negative electrode material for the asymmetric supercapacitor.
Finally, an asymmetric supercapacitor (ASC) with a positive electrode of Mn3O4 and a negative electrode of rGO/CNT/PPy is successfully demonstrated, which shows specific energy and power of 17.3 Wh kg-1 and 7.36 kW kg-1 with a cell voltage of 1.8 V. This ASC with a cell voltage of 1.6 V shows excellent charge-discharge cycle stability and ideal capacitive behavior in NaNO3 even after the application of 3250 charge-discharge cycles.
1. M.S. Halper and J.C. Ellenbogen, Supercapacitors: A brief overview, 2006, MITRE Nanosystems Group.
2. R. Ko¨tz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochimica Acta, 2000, 45, p. 2483-2498.
3. L. Zhang, X. Hu, Z. Wang, F. Sun, and D.G. Dorrell, A review of supercapacitor modeling, estimation, and applications: A control/management perspective, Renewable and Sustainable Energy Reviews, 2018, 81, p. 1868-1878.
4. J. Miller, Capacitor, 2009: Elsevier B.V.
5. M. Güllü and D. Yiğit, A novel asymmetric pseudocapacitor based on poly(5,12-dihydrothieno [3′,4′:2,3][1,4]dioxocino[6,7-b]quinoxaline) coated graphite anode and poly(ethylenedioxythiophene) coated graphite cathode, Synthetic Metals, 2012, 162, p. 1434-1442.
6. J.H. Park and O.O. Park, Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes, Journal of Power Sources, 2002, 111, p. 185-190.
7. S. Roth and M. Filzmoser, Conducting polymer-thirteen years of polyacetylene doping, Advanced Materials, 1990, 2, p. 356-360.
8. A. Ajayaghosh, Donor-acceptor type low band gap polymers: polysquaraines and related systems, Chemical Society Reviews, 2003, 32, p. 181-191.
9. P. Kurzweil, Electrochemical polymer capacitors, 2009: Elsevier B.V.
10. J.L. Bredas and G.B. Street, Polarons, bipolarons, and solitons in conducting polymers, Accounts of Chemical Research, 1985, 18, p. 309-315.
11. P.J. Hung, K.H. Chang, Y.F. Lee, C.C. Hu, and K.M. Lin, Ideal asymmetric supercapacitors consisting of polyaniline nanofibers and graphene nanosheets with proper complementary potential windows, Electrochimica Acta, 2010, 55, p. 6015-6021.
12. D. Belamger, X. Ren, J. Davey, F. Uribe, and S. Gottesfeld, Charaterization and Long-term Performance of Polyaniline-Based Electrochemical Capacitors, Journal of the Electrochemical Society, 2000, 147, p. 2923-2929.
13. Y. Li and Y. Fan, Doping competition of anions during the electropolymerization of pyrrole in aqueous solutions, Synthetic Metals, 1996, 79, p. 225-227.
14. L. Ruangchuay, A. Sirivat, and J. Schwank, Electrical conductivity response of polypyrrole to acetone vapor: effect of dopant anions and interaction mechanisms, Synthetic Metals, 2004, 140, p. 15-21.
15. J. Kielland, Individual activity coefficients of ions in aquenous solutions, J. Am. Chem. Soc., 1937, 59, p. 1675-1678.
16. H. Xie, M. Yan, and Z. Jiang, Transition of polypyrrole from electroactive to electroinactive state investigated by use of in situ FTIR spectroscopy, Electrochimica Acta, 1997, 42, p. 2361-2367.
17. R. John and G.G. Wallace, The use of microelectrodes to probe the electropolymerization mechanism of heterocyclic conducting polymers, Journal of Electroanalytical Chemistry, 1991, 306, p. 157-167.
18. T.W. Lewis, A study of the overoxidation of the conducting polymer polypyrrole, Doctor of Philosophy, 1998: University of Wollongong.
19. M. Gvozdenovic, B. Jugovic, J. Stevanovic, and B. Grgur, Electrochemical synthesis of electroconducting polymers, Hemijska industrija, 2014, 68, p. 673-684.
20. L. Qie, L.X. Yuan, W.X. Zhang, W.M. Chen, and Y.H. Huang, Revisit of Polypyrrole as Cathode Material for Lithium-Ion Battery, Journal of the Electrochemical Society, 2012, 159, p. A1624-A1629.
21. S.V. Kasisomayajula, X. Qi, C. Vetter, K. Croes, D. Pavlacky, and V.J. Gelling, A structural and morphological comparative study between chemically synthesized and photopolymerized poly(pyrrole), Journal of Coatings Technology and Research, 2009, 7, p. 145-158.
22. K.J. Wynne and G.B. Street, Poly(pyrro1-2-ylium tosylate): Electrochemical Synthesis and Physical and Mechanical Properties, Macromolecules 1985, 18, p. 2361-2368.
23. R. Qian and J. Qiu, Electrochemically prepared polypyrroles from aqueous solution, Polymer, 1987, 19, p. 157-172.
24. G. Zotti, G. Schiavon, and N. Comisso, Anion effects on conductivity of isomorphous polypyrrole. Charge pinning by nucleophilic anions, Synthetic Metals, 1991, 40, p. 309-316.
25. S. Ghosh, G.A. Bowmarker, R.P. Cooney, and J.M. Seakins, Infrared and Raman spectroscopic studies of the electrochemical oxidative degradation of polypyrrole, Synthetic Metals, 1998, 95, p. 63-67.
26. P.A. Christensen and A. Hamett, In situ spectroscopic investigations of the growth, electrochemical cycling and overoxidation of polypyrrole in aqueous solution, Electrochimica Acta, 1991, 36, p. 1263-1286.
27. T. Osaka, T. Momma, S.-i. Komaba, and H. Kanagawa, Electrochemical process of formation of an insulating polypyrrole film Journal of Electroanalytical Chemistry, 1994, 372, p. 201-207.
28. M. Iseki, K. Saito, M. Ikematsu, Y. Sugiyama, K. Kuhara, and A. Mizukami, Effect of cations on the electrochemical behavior of p-toluenesulfonate-doped aqueous solutions polypyrrole in various, Journal of Electroanalytical Chemistry, 1993, 358, p. 221-233.
29. T. Yeu, Electrochemical characterization of electronically conductive polypyrrole on cyclic voltammograms, Journal of The Electrochemical Society, 1991, 138, p. 2869-2877.
30. K. Qi, Y. Qiu, Z. Chen, and X. Guo, Corrosion of conductive polypyrrole: Effects of environmental factors, electrochemical stimulation, and doping anions, Corrosion Science, 2012, 60, p. 50-58.
31. H. Fu, Z.j. Du, W. Zou, H.q. Li, and C. Zhang, Carbon nanotube reinforced polypyrrole nanowire network as a high-performance supercapacitor electrode, Journal of Materials Chemistry A, 2013, 1, p. 14943-14950.
32. V. Khomenko, E. Raymundo-Piñero, E. Frackowiak, and F. Béguin, High-voltage asymmetric supercapacitors operating in aqueous electrolyte, Applied Physics A, 2005, 82, p. 567-573.
33. D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, and Y. Ma, Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors, Journal of Power Sources, 2011, 196, p. 5990-5996.
34. S. Grover, S. Shekhar, R.K. Sharma, and G. Singh, Multiwalled carbon nanotube supported polypyrrole manganese oxide composite supercapacitor electrode: Role of manganese oxide dispersion in performance evolution, Electrochimica Acta, 2014, 116, p. 137-145.
35. X. Zhao, B.M. Sanchez, P.J. Dobson, and P.S. Grant, The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices, Nanoscale, 2011, 3, p. 839-855.
36. V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy & Environmental Science, 2014, 7, p. 1597-1614.
37. J. Cao, Y. Wang, Y. Zhou, J.H. Ouyang, D. Jia, and L. Guo, High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes, Journal of Electroanalytical Chemistry, 2013, 689, p. 201-206.
38. Z. Tang, C.h. Tang, and H. Gong, A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes, Advanced Functional Materials, 2012, 22, p. 1272-1278.
39. C. Zhang, L. Xie, W. Song, J. Wang, G. Sun, and K. Li, Electrochemical performance of asymmetric supercapacitor based on Co3O4/AC materials, Journal of Electroanalytical Chemistry, 2013, 706, p. 1-6.
40. J. Shen, C. Yang, X. Li, and G. Wang, High-performance asymmetric supercapacitor based on nanoarchitectured polyaniline/graphene/carbon nanotube and activated graphene electrodes, ACS Appl Mater Interfaces, 2013, 5, p. 8467-8476.
41. L.Q. Fan, G.J. Liu, J.H. Wu, L. Liu, J.M. Lin, and Y.L. Wei, Asymmetric supercapacitor based on graphene oxide/polypyrrole composite and activated carbon electrodes, Electrochimica Acta, 2014, 137, p. 26-33.
42. K. Sun, H. Peng, J. Mu, G. Ma, G. Zhao, and Z. Lei, High energy density asymmetric supercapacitors based on polyaniline nanotubes and tungsten trioxide rods, Ionics, 2015, 21, p. 2309-2317.
43. C. Zhou, Y. Zhang, Y. Li, and J. Liu, Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor, Nano Lett, 2013, 13, p. 2078-2085.
44. F. Grote and Y. Lei, A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2, Nano Energy, 2014, 10, p. 63-70.
45. S.W. Zhang, B.S. Yin, C. Liu, Z.B. Wang, and D.M. Gu, Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core-shell heterostructured nanobelts for supercapacitor, Chemical Engineering Journal, 2017, 312, p. 296-305.
46. C.C. Hu, Y.T. Wu, and K.H. Chang, Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals: Determinant influence of oxidant, Chem. Mater, 2008, 20, p. 2890-2894.
47. N.S. Shaari, N. Sapiai, A. Jumahat, and M.H. Ismail, Functionalization of Multi-Wall Carbon Nanotubes in Chemical Solution of H2SO4/HNO3 and its Dispersion in Different Media, Materials Science Forum, 2017, 882, p. 103-107.
48. A.G. Osorio, I.C.L. Silveira, V.L. Bueno, and C.P. Bergmann, H2SO4/HNO3/HCl—Functionalization and its effect on dispersion of carbon nanotubes in aqueous media, Applied Surface Science, 2008, 255, p. 2485-2489.
49. L. Deng, G. Zhu, J. Wang, L. Kang, Z.H. Liu, Z. Yang, and Z. Wang, Graphene–MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte, Journal of Power Sources, 2011, 196, p. 10782-10787.
50. X. Lu, F. Zhang, H. Dou, C. Yuan, S. Yang, L. Hao, L. Shen, L. Zhang, and X. Zhang, Preparation and electrochemical capacitance of hierarchical graphene/polypyrrole/carbon nanotube ternary composites, Electrochimica Acta, 2012, 69, p. 160-166.
51. A.J. Bard and F. L.R., Electrochemical methods: fundamentals and applications, 2001, John Wiley & Sons Inc.: New York.
52. J. Wang, Y. Xu, J. Wang, and X. Du, Toward a high specific power and high stability polypyrrole supercapacitors, Synthetic Metals, 2011, 161, p. 1141-1144.
53. S. Konwer, R. Boruah, and S.K. Dolui, Studies on conducting polypyrrole/graphene oxide composites as supercapacitor electrode, Journal of Electronic Materials, 2011, 40, p. 2248-2255.
54. C. Bora and S.K. Dolui, Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties, Polymer, 2012, 53, p. 923-932.
55. Y.S. Lim, Y.P. Tan, H.N. Lim, N.M. Huang, and W.T. Tan, Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance, Journal of Polymer Research, 2013, 20, p. 156.
56. J. Liu, J. An, Y. Ma, M. Li, and R. Ma, Synthesis of a graphene-polypyrrole nanotube composite and its application in supercapacitor electrode, Journal of The Electrochemical Society, 2012, 159, p. A828-A833.
57. J. Wang, Y. Xu, X. Chen, and X. Sun, Capacitance properties of single wall carbon nanotube/polypyrrole composite films, Composites Science and Technology, 2007, 67, p. 2981-2985.
58. A. Kumar, R.K. Singh, H.K. Singh, P. Srivastava, and R. Singh, Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors, Journal of Power Sources, 2014, 246, p. 800-807.
59. X. Lu, H. Dou, C. Yuan, S. Yang, L. Hao, F. Zhang, L. Shen, L. Zhang, and X. Zhang, Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors, Journal of Power Sources, 2012, 197, p. 319-324.
60. A. Singh and A. Chandra, Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors, Journal of Applied Electrochemistry, 2013, 43, p. 773-782.
61. S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, and C.K. Das, Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor, Polymer, 2013, 54, p. 1033-1042.
62. S. Sahoo, S. Dhibar, and C.K. Das, Facile synthesis of polypyrrole nanofiber and its enhanced electrochemical performances in different electrolytes, eXPRESS Polymer Letters, 2012, 6, p. 965-974.
63. L. Mao, H.S.O. Chan, and J. Wu, Cetyltrimethylammonium bromide intercalated graphene/polypyrrole nanowire composites for high performance supercapacitor electrode, RSC Advances, 2012, 2, p. 10610-10617.
64. Y. Liu, Y. Zhang, G. Ma, Z. Wang, K. Liu, and H. Liu, Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor, Electrochimica Acta, 2013, 88, p. 519-525.
65. S.Y. Yang, K.H. Chang, H.W. Tien, Y.F. Lee, S.M. Li, Y.S. Wang, J.Y. Wang, C.C.M. Ma, and C.C. Hu, Design and tailoring of a hierarchical graphene-carbon nanotube architecture for supercapacitors, Journal of Materials Chemistry, 2011, 21, p. 2374-2380.
66. L. Deng, Z. Hao, J. Wang, G. Zhu, L. Kang, Z.H. Liu, Z. Yang, and Z. Wang, Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor, Electrochimica Acta, 2013, 89, p. 191-198.
67. K.S. Jang, H. Lee, and B. Moon, Synthesis and characterization of water soluble polypyrrole doped with functional dopants, Synthetic Metals, 2004, 143, p. 289-294.
68. G.W. Lee, J. Kim, J. Yoon, J.S. Bae, B.C. Shin, I.S. Kim, W. Oh, and M. Ree, Structural characterization of carboxylated multi-walled carbon nanotubes, Thin Solid Films, 2008, 516, p. 5781-5784.
69. V. Tucureanu, A. Matei, and A.M. Avram, FTIR Spectroscopy for Carbon Family Study, Crit Rev Anal Chem, 2016, 46, p. 502-520.
70. S. Kuwabata, J. Nakamura, and H. Yoneyama, Electrical conductivity of polypyrrole films doped with carboxylate anions, Journal of The Electrochemical Society, 1990, 137, p. 1788-1792.
71. H.H. Shen and C.C. Hu, A high-voltage asymmetric electrical double-layer capacitors using propylene carbonate, Electrochemistry Communications, 2016, 70, p. 23-27.
72. W. Liang, J. Lei, and C.R. Martin, Effect of synthesis temperature on the structure, doping level and charge-transport properties of polypyrrole, Synthetic Metals, 1992, 52, p. 227-239.
73. K.H. Chang, C.C. Hu, C.M. Huang, Y.L. Liu, and C.I. Chang, Microwave-assisted hydrothermal synthesis of crystalline WO3–WO3·0.5H2O mixtures for pseudocapacitors of the asymmetric type, Journal of Power Sources, 2011, 196, p. 2387-2392.
74. E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, 39, p. 937-950.
75. B.E. Conway, V. Birss, and J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, Journal of Power Sources, 1997, 66, p. 6-14.
76. M. Ramani, B.S. Haran, E. RWhite, and B.N. Popov, Synthesis and characterization of hydrous ruthenium oxide-carbon supercapacitors, Journal of The Electrochemical Society, 2001, 148, p. A374-A380.
77. C.C. Hu, W.C. Chen, and K.H. Chang, How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors, Journal of the Electrochemical Society, 2004, 151, p. A281-A290.
78. Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, and H.M. Cheng, High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors, ACS NANO, 2010, 4, p. 5835-5842.
79. H.Y. Hsu, K.H. Chang, R.R. Salunkhe, C.T. Hsu, and C.C. Hu, Synthesis and characterization of mesoporous Ni–Co oxy-hydroxides for pseudocapacitor application, Electrochimica Acta, 2013, 94, p. 104-112.
80. I.H. Kim, J.H. Kim, B.W. Cho, and K.B. Kim, Pseudocapacitive properties of electrochemically prepared vanadium oxide on carbon nanotube film substrate, Journal of The Electrochemical Society, 2006, 153, p. A1451-A1458.
81. T. Qi, J. Jiang, H. Chen, H. Wan, L. Miao, and L. Zhang, Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life, Electrochimica Acta, 2013, 114, p. 674-680.
82. S.Y. Wang and N.L. Wu, Operating characteristics of aqueous magnetite electrochemical capacitors, J. Appl. Electrochem., 2003, 33, p. 345-348.
83. Y.H. Chu, C.C. Hu, and K.H. Chang, Electrochemical quartz crystal microbalance study of amorphous MnO2 prepared by anodic deposition, Electrochimica Acta, 2012, 61, p. 124-131.
84. E. Eustache, R. Frappier, R.L. Porto, S. Bouhtiyya, J.F. Pierson, and T. Brousse, Asymmetric electrochemical capacitor microdevice designed with vanadium nitride and nickel oxide thin film electrodes, Electrochemistry Communications, 2013, 28, p. 104-106.
85. 陳壽安, 意外發現的導電高分子, 2000; Available from: https://www.scimonth.com.tw/tw/article/show.aspx?num=2150.
86. 黃桂武, 共軛性導電高分子材料技術簡介, 2010; Available from: https://www.materialsnet.com.tw/DocView.aspx?id=9028.
87. 龔宇睿 and 呂奇明, 電致變色材料發展趨勢, 2014; Available from: https://www.materialsnet.com.tw/DocView.aspx?id=11884.
88. L. Suzhou Yacoo Science Co., Electrochromic Material That Will Go Deep Into Our Live, 2017; Available from: https://www.yacooscience.com/pedot-126213-51-2-electrochromic-material-that-will-go-deep-into-our-lives_n37.
89. Zensor, 基本交流阻抗, 2016; Available from: http://www.zensor.com.tw/.
90. Gamry, Basics of electrochemical impedance spectroscopy, 2020; Available from: https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/.
91. 黃宏良, 奈米共軛高分子合成及特性探討, 有機高分子研究所, 碩士, 2005, 台灣: 台北科技大學.
92. 曾浩恩, 電致發光高分子元件物理:電荷傳遞與陷阱機制之研究, 化學工程學系, 博士, 2004, 台灣: 清華大學.
93. 何明益, 施體受體型窄能隙高分子的製備暨太陽能電池材料開發與熱電材料上之應用, 材料科學與工程系所 碩士, 2009, 台灣: 交通大學.
94. 張育圖, 聚-3-烷基六吩衍生物的室溫去摻雜及二次摻雜性質探討, 化學研究所, 碩士, 2001, 台灣: 中央大學.
95. 段应娇 and 王倩, 非对称型超级电容器电极材料研究进展, 化 工 新 型 材 料, 2019, 47.
96. 吳子和, 水相超級電容器之操作電壓最適化與過渡金屬氧化物及氫氧化物的充放電機制探討, 化學工程學系, 博士, 2016, 台灣: 清華大學.
97. 胡啟章, 電化學原理與方法, 二版, 2011, 台北市: 五南.