研究生: |
陳宗利 Chen, Zong-Li. |
---|---|
論文名稱: |
利用SrTiO3奈米晶體光催化氧化伯胺分子的耦合反應 Photocatalytic Oxidative Amine Coupling Using SrTiO3 Nanocrystals |
指導教授: |
黃暄益
Huang, Hsuan-Yi |
口試委員: |
陳俊太
Chen, Jiun-Tai 張佳智 Chang, Chia-Chih |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 晶面效應 、半導體 、鈦酸鍶 、光催化 、胺類耦合 、奈米材料 |
外文關鍵詞: | facet effect, semiconductor, SrTiO3, photocatalytic, amine coupling, nano material |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈦酸鍶材料在光催化降解有機物及光催化產氫領域有廣泛的應用,本研究利用鈦酸鍶材料,做有機光催化應用將伯胺分子氧化耦合合成亞胺分子,這是一個新穎的策略。鈦酸鍶材料具備合成容易、合成時間短、及合成成本低等優點,且光催化化學是一種綠色化學與環境友善的方法。在控制實驗,可知光源、氧氣對反應的重要性,並且在最佳條件實驗下,乙腈為最佳溶劑,用不同晶面之鈦酸鍶立方體和{110}-截角立方體以及{100}-截角菱形十二面體,結果是{100}-截角菱形十二面體具有最好的光催化活性,產率可達100%。我們也做了不同官能基的胺類進行氧化耦合反應,發現在推電子基官能基可獲得良好的產率,在雜環類的分子,也有不錯的產率。此外,鈦酸鍶材料具有良好的穩定性,可以在重複三次反應後仍具有量好產率,最後根據自由基和電子電洞捕捉劑實驗,以及EPR實驗提出一可能的反應機制。
SrTiO3 material has a wide range of applications in the fields of photocatalytic degradation of organic compounds and photocatalytic hydrogen production. Here we utilized SrTiO3 material for oxidative coupling of amine molecules to synthesize imine molecules, which represents a novel strategy. SrTiO3 material possesses advantages such as easy synthesis, short synthesis time, and low synthesis cost. Additionally, photocatalytic chemistry is a green and environmentally friendly method. In the controlled experiments, we determined the significance of the light source and oxygen for the reaction. Under the optimal conditions, acetonitrile was identified as the best solvent. Using different crystal faces of cubes and {110}-truncated cubes and {100}-truncated rhomboid dodecahedra of SrTiO3, the {100}-truncated rhombic dodecahedron exhibited the highest photocatalytic activity, with a yield of up to 100%. We also conducted oxidative coupling reactions of amines with different functional groups and found that electron donating functional groups resulted in good yields. Satisfactory yields were also obtained for heterocyclic molecules. Furthermore, SrTiO3 material demonstrated excellent stability, maintaining high yields even after three repeated reactions. Finally, based on experiments involving radical and electron-hole scavengers, as well as electron paramagnetic resonance (EPR) experiments, a possible reaction mechanism was proposed.
(1) Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 28, 100768.
(2) Huang, M. H. Facet‐Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15 (7), 1804726.
(3) Kuo, C.-H.; Huang, M. H. Morphologically Controlled Synthesis of Cu2O Nanocrystals and Their Properties. Nano Today 2010, 5 (2), 106-116.
(4) Huang, J.-Y.; Madasu, M.; Huang, M. H. Modified Semiconductor Band Diagrams Constructed from Optical Characterization of Size-Tunable Cu2O Cubes, Octahedra, and Rhombic Dodecahedra. J. Phys. Chem. C 2018, 122 (24), 13027-13033.
(5) Huang, M. H.; Naresh, G.; Chen, H.-S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10 (1), 4-15.
(6) Iwashina, K.; Kudo, A. Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation. J. Am. Chem. Soc. 2011, 133 (34), 13272-13275.
(7) Lu, Z.; Zhang, H.; Lei, W.; Sinclair, D. C.; Reaney, I. M. High-Figure-of-Merit Thermoelectric La-Doped A-Site-Deficient SrTiO3 Ceramics. Chem. Mater. 2016, 28 (3), 925-935.
(8) Sharma, P.; Ryu, S.; Burton, J.; Paudel, T.; Bark, C.; Huang, Z.; Tsymbal, E.; Catalan, G.; Eom, C.; Gruverman, A. Mechanical Tuning of LaAlO3/SrTiO3 Interface Conductivity. Nano Lett. 2015, 15 (5), 3547-3551.
(9) Hsieh, P.-L.; Naresh, G.; Huang, Y.-S.; Tsao, C.-W.; Hsu, Y.-J.; Chen, L.-J.; Huang, M. H. Shape-Tunable SrTiO3 Crystals Revealing Facet-Dependent Optical and Photocatalytic Properties. J. Phys. Chem. C 2019, 123 (22), 13664-13671.
(10) Hsieh, P.-L.; Madasu, M.; Hsiao, C.-H.; Peng, Y.-W.; Chen, L.-J.; Huang, M. H. Facet-Dependent and Adjacent Facet-Related Electrical Conductivity Properties of SrTiO3 crystals. J. Phys. Chem. C 2021, 125 (18), 10051-10056.
(11) Chang, C.-H.; Shen, Y.-H. Synthesis and Characterization of Chromium Doped SrTiO3 Photocatalyst. Mater. Lett. 2006, 60 (1), 129-132.
(12) Li, F.; Yu, K.; Lou, L.-L.; Su, Z.; Liu, S. Theoretical and Experimental Study of La/Ni co-Doped SrTiO3 Photocatalyst. Mater. Sci. Eng. B 2010, 172 (2), 136-141.
(13) Ruzimuradov, O.; Sharipov, K.; Yarbekov, A.; Saidov, K.; Hojamberdiev, M.; Prasad, R. M.; Cherkashinin, G.; Riedel, R. A Facile Preparation of Dual-Phase Nitrogen-doped TiO2–SrTiO3 Macroporous Monolithic Photocatalyst for Organic Dye Photodegradation under Visible Light. J. Eur. Ceram. Soc. 2015, 35 (6), 1815-1821.
(14) Patial, S.; Hasija, V.; Raizada, P.; Singh, P.; Singh, A. A. P. K.; Asiri, A. M. Tunable Photocatalytic Activity of SrTiO3 for Water Splitting: Strategies and Future Scenario. J. Environ. Chem. Eng. 2020, 8 (3), 103791.
(15) Kato, H.; Kudo, A. Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium. J. Phys. Chem. B 2002, 106 (19), 5029-5034.
(16) Chen, H.-C.; Huang, C.-W.; Wu, J. C.; Lin, S.-T. Theoretical Investigation of The Metal-Doped SrTiO3 Photocatalysts for Water Splitting. J. Phys. Chem. C 2012, 116 (14), 7897-7903.
(17) Jiang, J.; Kato, K.; Fujimori, H.; Yamakata, A.; Sakata, Y. Investigation on The Highly Active SrTiO3 Photocatalyst toward Overall H2O Splitting by Doping Na Ion. J. Catal. 2020, 390, 81-89.
(18) Niu, J.; Zhang, Y.; Shi, J.; Zhang, Z.; Ma, Z.; Yao, B.; Yu, X.; Wang, X. Microwave-Based Preparation of γ-Fe2O3/SrTiO3 Photocatalyst for Efficient Degradation of Organic Pollutants in Water. Mater. Chem. Phys. 2022, 288, 126357.
(19) Madasu, M.; Huang, M. H. Cu2O Polyhedra for Aryl Alkyne Homocoupling Reactions. Catal. Sci. Technol. 2020, 10 (20), 6948-6952.
(20) Tsai, H. Y.; Madasu, M.; Huang, M. H. Polyhedral Cu2O Crystals for Diverse Aryl Alkyne Hydroboration Reactions. Chem. Eur. J. 2019, 25 (5), 1300-1303.
(21) Madasu, M.; Hsia, C.-F.; Rej, S.; Huang, M. H. Cu2O Pseudomorphic Conversion to Cu Crystals for Diverse Nitroarene Reduction. ACS Sustain. Chem. Eng. 2018, 6 (8), 11071-11077.
(22) Su, Z.-H.; Hsieh, M.-H.; Chen, Z.-L.; Dai, W.-T.; Wu, E.-T.; Huang, M. H. Aqueous Phase Photocatalytic Hydroxylation of Arylboronic Acids Using Polyhedral Cu2O Crystals. Chem. Mater. 2023, 35 (7), 2782-2789.
(23) Hsieh, M.-H.; Su, Z.-H.; Wu, E.-T.; Huang, M. H. Photocatalytic Aryl Sulfide Oxidation Using 4-Nitrophenylacetylene-Modified Cu2O Crystals. ACS Appl. Mater. Interfaces 2023, 15 (9), 11662-11669.
(24) Agashe, H. B.; Dutta, T.; Garg, M.; Jain, N. Investigations on The Toxicological Profile of Functionalized Fifth‐Generation Poly (Propylene Imine) Dendrimer. J. Pharm. Pharmacol. 2006, 58 (11), 1491-1498.
(25) Chen, H.; Zhao, R.; Hu, J.; Wei, Z.; McClements, D. J.; Liu, S.; Li, B.; Li, Y. One-Step Dynamic Imine Chemistry for Preparation of Chitosan-Stabilized Emulsions Using A Natural Aldehyde: Acid Trigger Mechanism and Regulation and Gastric Delivery. J. Agric. Food Chem. 2020, 68 (19), 5412-5425.
(26) Damaceanu, M.-D.; Constantin, C.-P.; Marin, L. Insights into The Effect of Donor-Acceptor Strength Modulation on Physical Properties of Phenoxazine-Based Imine Dyes. Dyes Pigm. 2016, 134, 382-396.
(27) White, J. K.; Schmehl, R. H.; Turro, C. An Overview of Photosubstitution Reactions of Ru (II) Imine Complexes and Their Application in Photobiology and Photodynamic therapy. Inorganica Chim. Acta 2017, 454, 7-20.
(28) Worrall, K.; Xu, B.; Bontemps, S.; Arndtsen, B. A. A Palladium-Catalyzed Multicomponent Synthesis of Imidazolinium Salts and Imidazolines from Imines, Acid Chlorides, and Carbon Monoxide. J. Org. Chem. 2011, 76 (1), 170-180.
(29) Orito, K.; Hatakeyama, T.; Takeo, M.; Uchiito, S.; Tokuda, M.; Suginome, H. Dimerization of Anilines and Benzylamines with Mercury (II) Oxide-Iodine Reagent. Tetrahedron 1998, 54 (29), 8403-8410.
(30) Takemoto, S.; Kawamura, H.; Yamada, Y.; Okada, T.; Ono, A.; Yoshikawa, E.; Mizobe, Y.; Hidai, M. Ruthenium Complexes Containing Bis (Diarylamido)/Thioether Ligands: Synthesis and Their Catalysis for The Hydrogenation of Benzonitrile. Organometallics 2002, 21 (19), 3897-3904.
(31) Higuchi, M.; Ikeda, I.; Hirao, T. A Novel Synthetic Metal Catalytic System. J. Org. Chem. 1997, 62 (4), 1072-1078.
(32) Zhao, F.-J.; Zhang, G.; Ju, Z.; Tan, Y.-X.; Yuan, D. The Combination of Charge and Energy Transfer Processes in MOFs for Efficient Photocatalytic Oxidative Coupling of Amines. Inorg. Chem. 2020, 59 (5), 3297-3303.
(33) Liu, Y.; Ji, K.; Wang, J.; Li, H.; Zhu, X.; Ma, P.; Niu, J.; Wang, J. Enhanced Carrier Separation in Visible-Light-Responsive Polyoxometalate-Based Metal–Organic Frameworks for Highly Efficient Oxidative Coupling of Amines. ACS Appl. Mater. Interfaces 2022, 14 (24), 27882-27890.
(34) Li, S.; Li, L.; Li, Y.; Dai, L.; Liu, C.; Liu, Y.; Li, J.; Lv, J.; Li, P.; Wang, B. Fully Conjugated Donor–Acceptor Covalent Organic Frameworks for Photocatalytic Oxidative Amine Coupling and Thioamide Cyclization. ACS Catal. 2020, 10 (15), 8717-8726.
(35) Liu, S.; Su, Q.; Qi, W.; Luo, K.; Sun, X.; Ren, H.; Wu, Q. Highly Hydrophilic Covalent Organic Frameworks as Efficient and Reusable Photocatalysts for Oxidative Coupling of Amines in Aqueous Solution. Catal. Sci. Technol. 2022, 12 (9), 2837-2845.
(36) Wendlandt, A. E.; Stahl, S. S. Chemoselective Organocatalytic Aerobic Oxidation of Primary Amines to Secondary Imines. Org. Lett. 2012, 14 (11), 2850-2853.
(37) Qin, Y.; Zhang, L.; Lv, J.; Luo, S.; Cheng, J.-P. Bioinspired Organocatalytic Aerobic C–H Oxidation of Amines with An Ortho-Quinone Catalyst. Org. Lett. 2015, 17 (6), 1469-1472.
(38) Zhang, B.-Q.; Chen, J.-S.; Niu, H.-L.; Mao, C.-J.; Song, J.-M. Synthesis of Ultrathin WSe2 Nanosheets and Their High-Performance Catalysis for Conversion of Amines to Imines. Nanoscale 2018, 10 (43), 20266-20271.
(39) Togashi, H.; Shinzawa, H.; Matsuo, T.; Takeda, Y.; Takahashi, T.; Aoyama, M.; Oikawa, K.; Kamada, H. Analysis of Hepatic Oxidative Stress Status by Electron Spin Resonance Spectroscopy and Imaging. Free Radic. Biol. Med. 2000, 28 (6), 846-853.