研究生: |
林長鋆 Lin,Chang-Yun |
---|---|
論文名稱: |
Design Enumeration through Projection and Isomorphism Examination Based on Counting Vector |
指導教授: |
鄭少為
Cheng,Shao-Wei |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 97 |
中文關鍵詞: | 同構檢驗 、指標函數 、投影 、計數向量 、實驗設計 、設計完整列舉 |
外文關鍵詞: | isomorphism examination, indicator function, projection, counting vector, experimental design, design enumeration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在實驗設計的研究中,設計完整列舉與同構檢驗是兩項很困難的工作。雖然這是兩項不同的工作,但彼此之間卻有很密切的關係。設計完整列舉是指生成所有不同構的設計,如所有的正規設計或所有的直交陣列等。而同構檢驗則是比較兩個設計是否可經由行列或是水準互換而得到相同結構。在列舉所有的設計時,經常在某階段需要透過同構檢驗來減少多餘的計算。本篇論文包含兩個主要的部份。在第一個部份,我們基於指標函數和投影理論,提出一個組裝法來列舉所有的兩水準設計。此組裝法利用一個層級的結構而逐步地生成所有的設計。我們亦對此組裝法發展了一個演算法,來完整地生成所有非同構的設計。在第二個部份,我們提出利用計數向量的同構檢驗法。我們亦證明了此方法比文獻中曾提出的許多同構檢驗法更有效率。我們亦使用設計投影的技巧來更進一步改善檢驗的效率。
Design enumeration and isomorphism examination are two difficult tasks in the study of experimental design. The two tasks are different but often related to each other. Design enumeration is concerned with the complete generation of certain types of designs, such as regular designs or orthogonal arrays. Isomorphism examination, on the other hand, compares whether two designs have the same structure subject to some row and column operations. During the process of design enumeration, it is often required to perform isomorphism examination at some stage to reduce the possible redundant calculation. This dissertation includes two main parts. In the first part, we propose an assembly method based on the indicator function and the projection to enumerate all non-isomorphic two-level designs. The assembly method allows us to generate all designs sequentially in a hierarchical structure. We present an algorithm based on the assembly method and generate a complete catalogue of non-isomorphic designs for some cases. In the second part, we develop an initial screening method based on the counting vector for isomorphism examination. We prove that the method provides a more efficient examination than some methods proposed in other articles. The technique of projection is also applied to improve the examination efficiency.
[1] Chen, J. and Lin, D. K. J. (1991). On the identity of 2k􀀀p designs. Journal of Statistical Planning and Inference, 28, 95-98.
[2] Chen, J., Sun, D. X. and Wu, C. F. J. (1993). A catalogue of two-level and three-level fractional factorial designs with small runs. International Statistical Review, 61, 131-145.
[3] Cheng, S. W. and Ye, K. Q. (2004). Geometric isomorphism and minimum aberration for factorial designs with quantitative factors. Annals of Statistics, 32, 2168-2185.
[4] Clark, J. B. and Dean, A. M. (2001). Equivalence of fractional factorial designs. Statistica Sinica, 11, 537-547.
[5] Deng, L. Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs. Statistica Sinica, 9, 1071-1082.
[6] Draper, N. R. and Mitchell, T. J. (1968). Construction of the set of 256-run designs of resolution _ 5 and the set of even 512-run designs of resolution _ 6 with special reference to the unique saturated designs. Annals of Mathematical Statistics, 39, 246-255.
[7] Draper, N. R. and Mitchell, T. J. (1970). Construction of a set of 512-run designs of resolution _ 5 and the set of even 1024-run designs of resolution _ 6. Annals of Mathematical Statistics, 41, 876-887.
[8] Fontana, R., Pistone, G. and Rogantin, M. P. (2000). Classification of two level factorial fractions. Journal of Statistical Planning and Inference, 87, 149-172.
[9] Fujii, Y., Namikawa, T. and Yamamoto, S. (1989). Classification of two-symbol orthogonal arrays of strength t, t + 3 constraints and index 4, II. SUT Journal of Mathematics 25, 161-177.
[10] Hedayat, A. S., Seiden, E. and Stufken, J. (1997) On the maximum number of factors and the enumeration of 3-symbol orthogonal arrays of strength 3 and index 2. Journal of Statistical Planning and Inference, 58, 43-63.
[11] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999) Orthogonal Arrays: Theory and Applications. Springer, New York.
[12] Katsaounis, T. I. and Dean, A. M. (2008). A survey and evaluation of methods for determination of combinatorial equivalence of factorial designs. Journal of Statistical Planning and Inference, 138, 245-258.
[13] Lam, C. W. H. and Tonchev, V. D. (1996). Classification of affine resolvable 2-(27,9,4) designs. Journal of Statistical Planning and Inference, 56, 187-202.
[14] Ma, C. X., Fang, K. T. and Lin, D. K. J. (2001). On the isomorphism of fractional factorial designs. Journal of Complexity, 17, 86-97.
[15] Seiden, E. and Zemach, R. (1966). On orthogonal arrays. Annals of Mathematical Statistics, 37, 1355-1370.
[16] Stufken, J. and Tang, B. (2007). Complete enumeration of two-level orthogonal arrays of strength d with d + 2 constraints. Annals of Statistics, 35, 793-814.
[17] Sun, D. X., Li, W. and Ye, K. Q. (2002). An algorithm for sequentially constructing non-isomorphic orthogonal designs and its applications. Technical Report, Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, SUNYSB-AMS-01-13.
[18] Tang, B. (2001). Theory of J-characteristic for fractional factorial designs and projection justification of minimum G2-aberration. Biometrika, 88, 401- 407.
[19] Tang, B. and Deng, L. Y. (1999). Minimum G2-aberration for nonregular fractional factorial designs. Annals of Statistics, 27, 1914-1926.
[20] Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs. Statistica Sinica, 13, 691-708.
[21] Xu, H. (2005). A catalogue of three-level regular fractional factorial designs. Metrika, 62, 259-281.
[22] Yamamoto, S., Fujii, Y., Hyodo, Y. and Yumiba, H. (1992a). Classification of two-symbol orthogonal arrays of strength 2, size 16, 15 (maximal) constraints and index 4. SUT Journal of Mathematics, 28, 47-59.
[23] Yamamoto, S., Fujii, Y., Hyodo, Y. and Yumiba, H. (1992b). Classification of two-symbol orthogonal arrays of strength 2, size 20, 19 (maximal) constraints. SUT Journal of Mathematics, 28, 191-209.
[24] Ye, K. Q. (2003). Indicator function and its application in two-level factorial designs. Annals of Statistics, 31, 984-994.
[25] Yumiba, H., Hyodo, Y. and Yamamoto, S. (1997). Classification of two-symbol orthogonal arrays of size 24, strength 2, 6 constraints and index 6 derivable from saturated orthogonal arrays having 23 constraints. SUT Journal of Mathematics, 33, 47-63.