簡易檢索 / 詳目顯示

研究生: 林長鋆
Lin,Chang-Yun
論文名稱: Design Enumeration through Projection and Isomorphism Examination Based on Counting Vector
指導教授: 鄭少為
Cheng,Shao-Wei
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 97
中文關鍵詞: 同構檢驗指標函數投影計數向量實驗設計設計完整列舉
外文關鍵詞: isomorphism examination, indicator function, projection, counting vector, experimental design, design enumeration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在實驗設計的研究中,設計完整列舉與同構檢驗是兩項很困難的工作。雖然這是兩項不同的工作,但彼此之間卻有很密切的關係。設計完整列舉是指生成所有不同構的設計,如所有的正規設計或所有的直交陣列等。而同構檢驗則是比較兩個設計是否可經由行列或是水準互換而得到相同結構。在列舉所有的設計時,經常在某階段需要透過同構檢驗來減少多餘的計算。本篇論文包含兩個主要的部份。在第一個部份,我們基於指標函數和投影理論,提出一個組裝法來列舉所有的兩水準設計。此組裝法利用一個層級的結構而逐步地生成所有的設計。我們亦對此組裝法發展了一個演算法,來完整地生成所有非同構的設計。在第二個部份,我們提出利用計數向量的同構檢驗法。我們亦證明了此方法比文獻中曾提出的許多同構檢驗法更有效率。我們亦使用設計投影的技巧來更進一步改善檢驗的效率。


    Design enumeration and isomorphism examination are two difficult tasks in the study of experimental design. The two tasks are different but often related to each other. Design enumeration is concerned with the complete generation of certain types of designs, such as regular designs or orthogonal arrays. Isomorphism examination, on the other hand, compares whether two designs have the same structure subject to some row and column operations. During the process of design enumeration, it is often required to perform isomorphism examination at some stage to reduce the possible redundant calculation. This dissertation includes two main parts. In the first part, we propose an assembly method based on the indicator function and the projection to enumerate all non-isomorphic two-level designs. The assembly method allows us to generate all designs sequentially in a hierarchical structure. We present an algorithm based on the assembly method and generate a complete catalogue of non-isomorphic designs for some cases. In the second part, we develop an initial screening method based on the counting vector for isomorphism examination. We prove that the method provides a more efficient examination than some methods proposed in other articles. The technique of projection is also applied to improve the examination efficiency.

    1 Introduction 3 2 Design enumeration through projection 6 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Design enumeration and isomorphic examination . . . . . 8 2.2.2 Indicator function and J-characteristics . . . . . . . . . . . 9 2.3 Design enumeration . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Incomplete indicator function . . . . . . . . . . . . . . . . 14 2.3.2 Assembly method . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.4 Hierarchical structure . . . . . . . . . . . . . . . . . . . . . 21 2.4 Isomorphism examination . . . . . . . . . . . . . . . . . . . . . . 24 2.4.1 Method based on group structure . . . . . . . . . . . . . . 24 2.4.2 Projective index set . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Algorithm and results . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.2 Some results . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3 Isomorphism examination based on counting vector 36 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2 Isomorphism of counting vectors . . . . . . . . . . . . . . . . . . . 43 3.3 Examination measure based on counting vectors . . . . . . . . . . 54 3.3.1 Split-N vectors . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3.2 Split-N matrix . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.3.3 Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.4 Simpli_ed methods . . . . . . . . . . . . . . . . . . . . . . 64 3.4 Some comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4 Summary

    [1] Chen, J. and Lin, D. K. J. (1991). On the identity of 2k􀀀p designs. Journal of Statistical Planning and Inference, 28, 95-98.
    [2] Chen, J., Sun, D. X. and Wu, C. F. J. (1993). A catalogue of two-level and three-level fractional factorial designs with small runs. International Statistical Review, 61, 131-145.
    [3] Cheng, S. W. and Ye, K. Q. (2004). Geometric isomorphism and minimum aberration for factorial designs with quantitative factors. Annals of Statistics, 32, 2168-2185.
    [4] Clark, J. B. and Dean, A. M. (2001). Equivalence of fractional factorial designs. Statistica Sinica, 11, 537-547.
    [5] Deng, L. Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett-Burman and other nonregular factorial designs. Statistica Sinica, 9, 1071-1082.
    [6] Draper, N. R. and Mitchell, T. J. (1968). Construction of the set of 256-run designs of resolution _ 5 and the set of even 512-run designs of resolution _ 6 with special reference to the unique saturated designs. Annals of Mathematical Statistics, 39, 246-255.
    [7] Draper, N. R. and Mitchell, T. J. (1970). Construction of a set of 512-run designs of resolution _ 5 and the set of even 1024-run designs of resolution _ 6. Annals of Mathematical Statistics, 41, 876-887.
    [8] Fontana, R., Pistone, G. and Rogantin, M. P. (2000). Classification of two level factorial fractions. Journal of Statistical Planning and Inference, 87, 149-172.
    [9] Fujii, Y., Namikawa, T. and Yamamoto, S. (1989). Classification of two-symbol orthogonal arrays of strength t, t + 3 constraints and index 4, II. SUT Journal of Mathematics 25, 161-177.
    [10] Hedayat, A. S., Seiden, E. and Stufken, J. (1997) On the maximum number of factors and the enumeration of 3-symbol orthogonal arrays of strength 3 and index 2. Journal of Statistical Planning and Inference, 58, 43-63.
    [11] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999) Orthogonal Arrays: Theory and Applications. Springer, New York.
    [12] Katsaounis, T. I. and Dean, A. M. (2008). A survey and evaluation of methods for determination of combinatorial equivalence of factorial designs. Journal of Statistical Planning and Inference, 138, 245-258.
    [13] Lam, C. W. H. and Tonchev, V. D. (1996). Classification of affine resolvable 2-(27,9,4) designs. Journal of Statistical Planning and Inference, 56, 187-202.
    [14] Ma, C. X., Fang, K. T. and Lin, D. K. J. (2001). On the isomorphism of fractional factorial designs. Journal of Complexity, 17, 86-97.
    [15] Seiden, E. and Zemach, R. (1966). On orthogonal arrays. Annals of Mathematical Statistics, 37, 1355-1370.
    [16] Stufken, J. and Tang, B. (2007). Complete enumeration of two-level orthogonal arrays of strength d with d + 2 constraints. Annals of Statistics, 35, 793-814.
    [17] Sun, D. X., Li, W. and Ye, K. Q. (2002). An algorithm for sequentially constructing non-isomorphic orthogonal designs and its applications. Technical Report, Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, SUNYSB-AMS-01-13.
    [18] Tang, B. (2001). Theory of J-characteristic for fractional factorial designs and projection justification of minimum G2-aberration. Biometrika, 88, 401- 407.
    [19] Tang, B. and Deng, L. Y. (1999). Minimum G2-aberration for nonregular fractional factorial designs. Annals of Statistics, 27, 1914-1926.
    [20] Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated designs. Statistica Sinica, 13, 691-708.
    [21] Xu, H. (2005). A catalogue of three-level regular fractional factorial designs. Metrika, 62, 259-281.
    [22] Yamamoto, S., Fujii, Y., Hyodo, Y. and Yumiba, H. (1992a). Classification of two-symbol orthogonal arrays of strength 2, size 16, 15 (maximal) constraints and index 4. SUT Journal of Mathematics, 28, 47-59.
    [23] Yamamoto, S., Fujii, Y., Hyodo, Y. and Yumiba, H. (1992b). Classification of two-symbol orthogonal arrays of strength 2, size 20, 19 (maximal) constraints. SUT Journal of Mathematics, 28, 191-209.
    [24] Ye, K. Q. (2003). Indicator function and its application in two-level factorial designs. Annals of Statistics, 31, 984-994.
    [25] Yumiba, H., Hyodo, Y. and Yamamoto, S. (1997). Classification of two-symbol orthogonal arrays of size 24, strength 2, 6 constraints and index 6 derivable from saturated orthogonal arrays having 23 constraints. SUT Journal of Mathematics, 33, 47-63.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE