研究生: |
彭暐舜 Peng, Wei-Shun. |
---|---|
論文名稱: |
金/二氧化鈦與多層次孔洞沸石之奈米複合材料的製備與其於可見光催化產氫之研究 Synthesis of Au / TiO2 @ Hierarchical Silicalite-1 Nanocomposites for Visible-Light Photocatalytic Hydrogen Production |
指導教授: |
楊家銘
Yang, Chia-Min |
口試委員: |
朱立岡
Chu, Li-Kang 林昇佃 Lin, Sheng-Dian |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 表面電漿共振光催化 、可見光 、產氫反應 、分子大小選擇性 |
外文關鍵詞: | Plasmonic photocatalysis, Visible light, Hydrogen production, Size exclusion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究運用層狀沸石結構hierarchical silicalite-1 octahedra作為模板,填入金、二氧化鈦,使金生長於模板狹縫狀孔洞中,成功合成出具有碟狀形貌的金奈米顆粒,並且於金奈米顆粒周圍修飾上二氧化鈦的光催化劑。金碟狀奈米顆粒擁有強的局域表面電漿共振吸收,並且二氧化鈦在金碟狀奈米顆粒的周圍,可以幫助穩定局域表面電漿共振產生的光致電子,幫助電子電洞對分離,提升光催化活性。將此材料作為可見光催化產氫光催化劑,在可見光照射下,以甲醇作為犧牲試劑的條件下,具有高達264 μmolg-1h-1的產氫活性,是Au/P25活性的24倍。此外,由於金奈米顆粒被層狀沸石、二氧化鈦所包覆,所以可以運用層狀沸石的孔道進行犧牲試劑大小的篩選,此光催化劑在分別以甲醇、乙醇做為犧牲試劑的條件下,在可見光照射下,能夠選擇性的只與甲醇進行光催化產氫反應。
In this thesis, photocatalysts which contained Au nanodisks were synthesized by intercalating Au and TiO2 into inter-sheet spacing of hierarchical silicalite-1 octahedra which were self-pillared zeolite nanosheets. Au nanodisks exhibited high light absorption in visible light region by localized surface plasmon resonance and neighboring TiO2 could stabilize LSPR induced electrons. This photocatalyst showed 24 times higher activity( 264 μmolg-1h-1 ) than Au/P25 for photocatalytic hydrogen production in methanol solution by visible light irradiation. Because Au nanodisks and TiO2 were sandwiched between zeolite nanosheets, this photocatalyst could selectively react with sacrificial agents with different sizes by size exclusion effect which provided by zeolite nanosheets. By using methanol and ethanol as sacrificial agent, this photocatalyst showed no activity for photocatalytic hydrogen production in ethanol solution by visible light irradiation.
1. Ahmad, H.; Kamarudin, S. K.; Minggu, L. J.; Kassim, M., Hydrogen from photo-catalytic water splitting process: A review. Renewable and Sustainable Energy Reviews 2015, 43, 599-610.
2. Li, J.; Wu, N., Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 2015, 5, 1360-1384.
3. Yuan, Y.-P.; Ruan, L.-W.; Barber, J.; Joachim Loo, S. C.; Xue, C., Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy & Environmental Science 2014, 7, 3934-3951.
4. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38, 253-278.
5. Fujishima, A.; Honda, K., ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE. Nature 1972, 238, 37-+.
6. Li, X.; Yu, J. G.; Low, J. X.; Fang, Y. P.; Xiao, J.; Chen, X. B., Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 2015, 3, 2485-2534.
7. Tang, J. W.; Durrant, J. R.; Klug, D. R., Mechanism of photocatalytic water splitting in TiO(2). Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. J. Am. Chem. Soc. 2008, 130, 13885-13891.
8. Serrano, E.; Rus, G.; García-Martínez, J., Nanotechnology for sustainable energy. Renewable and Sustainable Energy Reviews 2009, 13, 2373-2384.
9. New and Future Developments in Catalysis. In New and Future Developments in Catalysis, Suib, S. L., Ed. Elsevier: Amsterdam, 2013; p i.
10. Reza Gholipour, M.; Dinh, C.-T.; Beland, F.; Do, T.-O., Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 2015, 7, 8187-8208.
11. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 2014, 43, 7520-7535.
12. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S., Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews 2010, 110, 6503-6570.
13. Yang, J.; Wang, D.; Han, H.; Li, C., Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research 2013, 46, 1900-1909.
14. Wang, X.; Zheng, S.; Zhang, Y., A novel method to prepare ultrafine potassium tantalate powders. Materials Letters 2008, 62, 1212-1214.
15. Park, H.; Park, Y.; Kim, W.; Choi, W., Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2013, 15, 1-20.
16. Ni, M.; Leung, M. K. H.; Leung, D. Y. C.; Sumathy, K., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews 2007, 11, 401-425.
17. Fujishima, A.; Zhang, X. T.; Tryk, D. A., TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515-582.
18. Landmann, M.; Rauls, E.; Schmidt, W. G., The electronic structure and optical response of rutile, anatase and brookite TiO2. J. Phys.-Condes. Matter 2012, 24, 6.
19. Osterloh, F. E., Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chemical Society Reviews 2013, 42, 2294-2320.
20. Tributsch, H., Photovoltaic hydrogen generation. Int. J. Hydrog. Energy 2008, 33, 5911-5930.
21. Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z., Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews 2014, 43, 7787-7812.
22. Maeda, K.; Saito, N.; Lu, D.; Inoue, Y.; Domen, K., Photocatalytic Properties of RuO2-Loaded β-Ge3N4 for Overall Water Splitting. The Journal of Physical Chemistry C 2007, 111, 4749-4755.
23. Kazuhiko, M.; Kentaro, T.; Daling, L.; Nobuo, S.; Yasunobu, I.; Kazunari, D., Noble‐Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting. Angewandte Chemie International Edition 2006, 45, 7806-7809.
24. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668-677.
25. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238-7248.
26. Silva, C. G.; Juarez, R.; Marino, T.; Molinari, R.; Garcia, H., Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. J. Am. Chem. Soc. 2011, 133, 595-602.
27. Seh, Z. W.; Liu, S.; Low, M.; Zhang, S.-Y.; Liu, Z.; Mlayah, A.; Han, M.-Y., Janus Au-TiO2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation. Adv. Mater. 2012, 24, 2310-2314.
28. Mubeen, S.; Lee, J.; Liu, D.; Stucky, G. D.; Moskovits, M., Panchromatic Photoproduction of H2 with Surface Plasmons. Nano Lett. 2015, 15, 2132-2136.
29. Ah, C. S.; Yun, Y. J.; Park, H. J.; Kim, W.-J.; Ha, D. H.; Yun, W. S., Size-Controlled Synthesis of Machinable Single Crystalline Gold Nanoplates. Chem. Mat. 2005, 17, 5558-5561.
30. Hanarp, P.; Kall, M.; Sutherland, D. S., Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography. J. Phys. Chem. B 2003, 107, 5768-5772.
31. Zhang, X. M.; Chen, Y. L.; Liu, R. S.; Tsai, D. P., Plasmonic photocatalysis. Rep. Prog. Phys. 2013, 76, 41.
32. Mubeen, S.; Hernandez-Sosa, G.; Moses, D.; Lee, J.; Moskovits, M., Plasmonic Photosensitization of a Wide Band Gap Semiconductor: Converting Plasmons to Charge Carriers. Nano Lett. 2011, 11, 5548-5552.
33. Nishijima, Y.; Ueno, K.; Yokota, Y.; Murakoshi, K.; Misawa, H., Plasmon-Assisted Photocurrent Generation from Visible to Near-Infrared Wavelength Using a Au-Nanorods/TiO2 Electrode. J. Phys. Chem. Lett. 2010, 1, 2031-2036.
34. Kowalska, E.; Abe, R.; Ohtani, B., Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. Chem. Commun. 2009, 241-243.
35. Sing, K. S. W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). In Pure Appl. Chem., 1985; Vol. 57, p 603.
36. Chen, L.-H.; Li, X.-Y.; Rooke, J. C.; Zhang, Y.-H.; Yang, X.-Y.; Tang, Y.; Xiao, F.-S.; Su, B.-L., Hierarchically structured zeolites: synthesis, mass transport properties and applications. J. Mater. Chem. 2012, 22, 17381-17403.
37. Breck, D. W., Zeolite molecular sieves: structure, chemistry, and use. Wiley: 1973.
38. Barrer, R. M., Zeolites and clay minerals as sorbents and molecular sieves. Academic Press: 1978.
39. Morris, R. E., Modular materials from zeolite-like building blocks. J. Mater. Chem. 2005, 15, 931-938.
40. McCusker, L. B.; Liebau, F.; Engelhardt, G., Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts: (IUPAC recommendations 2001). Microporous and Mesoporous Materials 2003, 58, 3-13.
41. Flanigen, E. M.; Bennett, J. M.; Grose, R. W.; Cohen, J. P.; Patton, R. L.; Kirchner, R. M.; Smith, J. V., Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature 1978, 271, 512.
42. Olson, D. H.; Kokotailo, G. T.; Lawton, S. L.; Meier, W. M., Crystal structure and structure-related properties of ZSM-5. The Journal of Physical Chemistry 1981, 85, 2238-2243.
43. Foster, M. D.; Rivin, I.; Treacy, M. M. J.; Friedrichs, O. D., A geometric solution to the largest-free-sphere problem in zeolite frameworks. Microporous and Mesoporous Materials 2006, 90, 32-38.
44. Schenk, M.; Smit, B.; Maesen, T. L. M.; Vlugt, T. J. H., Molecular simulations of the adsorption of cycloalkanes in MFI-type silica. Phys. Chem. Chem. Phys. 2005, 7, 2622-2628.
45. Na, K.; Choi, M.; Ryoo, R., Recent advances in the synthesis of hierarchically nanoporous zeolites. Microporous and Mesoporous Materials 2013, 166, 3-19.
46. Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R., Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 2009, 461, 246-U120.
47. Kim, J.; Park, W.; Ryoo, R., Surfactant-Directed Zeolite Nanosheets: A High-Performance Catalyst for Gas-Phase Beckmann Rearrangement. ACS Catalysis 2011, 1, 337-341.
48. Hu, S.; Shan, J.; Zhang, Q.; Wang, Y.; Liu, Y.; Gong, Y.; Wu, Z.; Dou, T., Selective formation of propylene from methanol over high-silica nanosheets of MFI zeolite. Applied Catalysis A: General 2012, 445-446, 215-220.
49. Na, K.; Park, W.; Seo, Y.; Ryoo, R., Disordered Assembly of MFI Zeolite Nanosheets with a Large Volume of Intersheet Mesopores. Chem. Mat. 2011, 23, 1273-1279.
50. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., REPORTING PHYSISORPTION DATA FOR GAS SOLID SYSTEMS WITH SPECIAL REFERENCE TO THE DETERMINATION OF SURFACE-AREA AND POROSITY (RECOMMENDATIONS 1984). Pure Appl. Chem. 1985, 57, 603-619.
51. Chang, A.; Hsiao, H. M.; Chen, T. H.; Chu, M. W.; Yang, C. M., Hierarchical silicalite-1 octahedra comprising highly-branched orthogonally-stacked nanoplates as efficient catalysts for vapor-phase Beckmann rearrangement. Chem. Commun. 2016, 52, 11939-11942.
52. Liu, X. S.; Lu, K. K.; Thomas, J. K., PREPARATION, CHARACTERIZATION AND PHOTOREACTIVITY OF TITANIUM(IV) OXIDE ENCAPSULATED IN ZEOLITES. J. Chem. Soc.-Faraday Trans. 1993, 89, 1861-1865.
53. Schwartz, V.; Mullins, D. R.; Yan, W. F.; Zhu, H. G.; Dai, S.; Overbury, S. H., Structural investigation of au catalysts on TiO2-SiO2 supports: Nature of the local structure of ti and au atoms by EXAFS and XANES. J. Phys. Chem. C 2007, 111, 17322-17332.
54. Chiarello, G. L.; Aguirre, M. H.; Selli, E., Hydrogen production by photocatalytic steam reforming of methanol on noble metal-modified TiO2. J. Catal. 2010, 273, 182-190.